Nuprl Lemma : real-vec-dist-between-2

n:ℕ. ∀a,c:ℝ^n. ∀t:ℝ.  (d(t*a r1 t*c;c) (|t| d(a;c)))


Proof




Definitions occuring in Statement :  real-vec-dist: d(x;y) real-vec-mul: a*X real-vec-add: Y real-vec: ^n rabs: |x| rsub: y req: y rmul: b int-to-real: r(n) real: nat: all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] real-vec-dist: d(x;y) real-vec-sub: Y real-vec-mul: a*X real-vec-add: Y req-vec: req-vec(n;x;y) nat: real-vec: ^n uimplies: supposing a rsub: y implies:  Q and: P ∧ Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) subtype_rel: A ⊆B prop:
Lemmas referenced :  real_wf real-vec_wf nat_wf int_seg_wf req_wf radd_wf rmul_wf int-to-real_wf rminus_wf req_weakening uiff_transitivity req_functionality radd_functionality req_transitivity rmul-distrib rmul_over_rminus rmul-one-both rminus_functionality rmul_comm req_inversion radd-assoc radd-ac radd_comm radd-rminus-assoc real-vec-norm_wf real-vec-sub_wf real-vec-add_wf real-vec-mul_wf rsub_wf rabs_wf real-vec-norm_functionality real-vec-dist_wf rleq_wf real-vec-norm-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule natural_numberEquality setElimination rename applyEquality because_Cache independent_isectElimination independent_functionElimination productElimination lambdaEquality setEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,c:\mBbbR{}\^{}n.  \mforall{}t:\mBbbR{}.    (d(t*a  +  r1  -  t*c;c)  =  (|t|  *  d(a;c)))



Date html generated: 2016_10_26-AM-10_34_59
Last ObjectModification: 2016_09_25-AM-00_07_52

Theory : reals


Home Index