Nuprl Lemma : real-vec-dist-between-2
∀n:ℕ. ∀a,c:ℝ^n. ∀t:ℝ.  (d(t*a + r1 - t*c;c) = (|t| * d(a;c)))
Proof
Definitions occuring in Statement : 
real-vec-dist: d(x;y)
, 
real-vec-mul: a*X
, 
real-vec-add: X + Y
, 
real-vec: ℝ^n
, 
rabs: |x|
, 
rsub: x - y
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
real-vec-dist: d(x;y)
, 
real-vec-sub: X - Y
, 
real-vec-mul: a*X
, 
real-vec-add: X + Y
, 
req-vec: req-vec(n;x;y)
, 
nat: ℕ
, 
real-vec: ℝ^n
, 
uimplies: b supposing a
, 
rsub: x - y
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
real_wf, 
real-vec_wf, 
nat_wf, 
int_seg_wf, 
req_wf, 
radd_wf, 
rmul_wf, 
int-to-real_wf, 
rminus_wf, 
req_weakening, 
uiff_transitivity, 
req_functionality, 
radd_functionality, 
req_transitivity, 
rmul-distrib, 
rmul_over_rminus, 
rmul-one-both, 
rminus_functionality, 
rmul_comm, 
req_inversion, 
radd-assoc, 
radd-ac, 
radd_comm, 
radd-rminus-assoc, 
real-vec-norm_wf, 
real-vec-sub_wf, 
real-vec-add_wf, 
real-vec-mul_wf, 
rsub_wf, 
rabs_wf, 
real-vec-norm_functionality, 
real-vec-dist_wf, 
rleq_wf, 
real-vec-norm-mul
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
natural_numberEquality, 
setElimination, 
rename, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
productElimination, 
lambdaEquality, 
setEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,c:\mBbbR{}\^{}n.  \mforall{}t:\mBbbR{}.    (d(t*a  +  r1  -  t*c;c)  =  (|t|  *  d(a;c)))
Date html generated:
2016_10_26-AM-10_34_59
Last ObjectModification:
2016_09_25-AM-00_07_52
Theory : reals
Home
Index