Nuprl Lemma : real-vec-dist-between-1

n:ℕ. ∀a,c:ℝ^n. ∀t:ℝ.  (d(a;t*a r1 t*c) (|r1 t| d(a;c)))


Proof




Definitions occuring in Statement :  real-vec-dist: d(x;y) real-vec-mul: a*X real-vec-add: Y real-vec: ^n rabs: |x| rsub: y req: y rmul: b int-to-real: r(n) real: nat: all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] real-vec-dist: d(x;y) real-vec-sub: Y real-vec-mul: a*X real-vec-add: Y req-vec: req-vec(n;x;y) nat: real-vec: ^n uimplies: supposing a implies:  Q rsub: y and: P ∧ Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) subtype_rel: A ⊆B prop:
Lemmas referenced :  real_wf real-vec_wf nat_wf int_seg_wf req_wf rsub_wf radd_wf rmul_wf int-to-real_wf rminus_wf req_weakening uiff_transitivity req_functionality radd_functionality rminus_functionality req_transitivity rmul-distrib rmul_over_rminus rmul-one-both rmul_comm rminus-radd rminus-rminus req_inversion radd-assoc radd-ac rmul_functionality rminus-as-rmul radd_comm real-vec-norm_wf real-vec-sub_wf real-vec-add_wf real-vec-mul_wf rabs_wf real-vec-norm_functionality real-vec-dist_wf rleq_wf real-vec-norm-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule natural_numberEquality setElimination rename applyEquality because_Cache minusEquality independent_isectElimination independent_functionElimination productElimination lambdaEquality setEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,c:\mBbbR{}\^{}n.  \mforall{}t:\mBbbR{}.    (d(a;t*a  +  r1  -  t*c)  =  (|r1  -  t|  *  d(a;c)))



Date html generated: 2016_10_26-AM-10_34_42
Last ObjectModification: 2016_09_25-AM-00_05_33

Theory : reals


Home Index