Nuprl Lemma : real-vec-between-inner-trans

n:ℕ. ∀a,b,c,d:ℝ^n.  (a-b-d  b-c-d  a-b-c)


Proof




Definitions occuring in Statement :  real-vec-between: a-b-c real-vec: ^n nat: all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  real-vec-between: a-b-c all: x:A. B[x] implies:  Q exists: x:A. B[x] and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a uiff: uiff(P;Q) rev_implies:  Q guard: {T} iff: ⇐⇒ Q cand: c∧ B top: Top rsub: y rneq: x ≠ y or: P ∨ Q rooint: (l, u) i-member: r ∈ I real-vec-mul: a*X real-vec-add: Y req-vec: req-vec(n;x;y) nat: real-vec: ^n rev_uimplies: rev_uimplies(P;Q) true: True squash: T subtype_rel: A ⊆B itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A real_term_value: real_term_value(f;t) int_term_ind: int_term_ind itermSubtract: left (-) right itermAdd: left (+) right itermMinus: "-"num itermMultiply: left (*) right itermVar: vvar
Lemmas referenced :  exists_wf real_wf i-member_wf rooint_wf int-to-real_wf req-vec_wf real-vec-add_wf real-vec-mul_wf rsub_wf real-vec_wf nat_wf req-vec_functionality req-vec_weakening real-vec-add_functionality real-vec-mul_functionality req_weakening rmul-one-both rmul_comm rmul-zero-both rless_functionality rleq_weakening_rless rless_transitivity2 rmul_wf rmul_preserves_rless member_rooint_lemma radd-preserves-rless radd_wf rminus_wf rless_wf radd-zero-both radd_functionality radd-rminus-both radd_comm radd-ac rminus_functionality rdiv_wf rmul-rdiv-cancel2 rmul_over_rminus rmul-distrib req_transitivity rminus-zero equal_wf int_seg_wf req_functionality rmul_functionality req_wf uiff_transitivity rmul-distrib1 rmul-assoc rminus-rminus req_inversion radd-assoc radd-rminus-assoc rmul-ac rminus-radd rminus-as-rmul rmul_preserves_req squash_wf true_wf iff_weakening_equal rdiv_functionality real_term_polynomial itermSubtract_wf itermAdd_wf itermMinus_wf itermMultiply_wf itermVar_wf itermConstant_wf req-iff-rsub-is-0 radd-int rmul-distrib2 rmul-identity1 radd-preserves-req
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination hypothesis lambdaEquality productEquality natural_numberEquality hypothesisEquality because_Cache rename independent_isectElimination addLevel existsFunctionality independent_pairFormation andLevelFunctionality promote_hyp independent_functionElimination voidEquality voidElimination isect_memberEquality dependent_functionElimination levelHypothesis dependent_pairFormation inrFormation equalityTransitivity equalitySymmetry setElimination applyEquality minusEquality imageElimination imageMemberEquality baseClosed universeEquality computeAll int_eqEquality intEquality addEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c,d:\mBbbR{}\^{}n.    (a-b-d  {}\mRightarrow{}  b-c-d  {}\mRightarrow{}  a-b-c)



Date html generated: 2017_10_03-AM-10_48_31
Last ObjectModification: 2017_07_28-AM-08_20_10

Theory : reals


Home Index