Step
*
2
1
1
2
of Lemma
rv-between-small-expand
1. n : ℕ+
2. a : ℝ^n
3. c : ℝ^n
4. k : ℕ+
5. a ≠ c
6. (r(k + 1)/r(k))*a + (r(-1)/r(k))*c-a-(r(k + 1)/r(k))*c + (r(-1)/r(k))*a
7. d((r(k + 1)/r(k))*a + (r(-1)/r(k))*c;(r(k + 1)/r(k))*c + (r(-1)/r(k))*a)
= (d((r(k + 1)/r(k))*a + (r(-1)/r(k))*c;a) + d(a;(r(k + 1)/r(k))*c + (r(-1)/r(k))*a))
8. r0 ≤ d(a;(r(k + 1)/r(k))*c + (r(-1)/r(k))*a)
9. d((r(k + 1)/r(k))*a + (r(-1)/r(k))*c;a) = (d(a;c)/r(k))
⊢ r0 < d((r(k + 1)/r(k))*a + -((r1/r(k)))*c;a)
BY
{ (Assert -((r1/r(k))) = (r(-1)/r(k)) BY
(nRMul ⌜r(k)⌝ 0⋅ THEN Auto)) }
1
1. n : ℕ+
2. a : ℝ^n
3. c : ℝ^n
4. k : ℕ+
5. a ≠ c
6. (r(k + 1)/r(k))*a + (r(-1)/r(k))*c-a-(r(k + 1)/r(k))*c + (r(-1)/r(k))*a
7. d((r(k + 1)/r(k))*a + (r(-1)/r(k))*c;(r(k + 1)/r(k))*c + (r(-1)/r(k))*a)
= (d((r(k + 1)/r(k))*a + (r(-1)/r(k))*c;a) + d(a;(r(k + 1)/r(k))*c + (r(-1)/r(k))*a))
8. r0 ≤ d(a;(r(k + 1)/r(k))*c + (r(-1)/r(k))*a)
9. d((r(k + 1)/r(k))*a + (r(-1)/r(k))*c;a) = (d(a;c)/r(k))
10. -((r1/r(k))) = (r(-1)/r(k))
⊢ r0 < d((r(k + 1)/r(k))*a + -((r1/r(k)))*c;a)
Latex:
Latex:
1. n : \mBbbN{}\msupplus{}
2. a : \mBbbR{}\^{}n
3. c : \mBbbR{}\^{}n
4. k : \mBbbN{}\msupplus{}
5. a \mneq{} c
6. (r(k + 1)/r(k))*a + (r(-1)/r(k))*c-a-(r(k + 1)/r(k))*c + (r(-1)/r(k))*a
7. d((r(k + 1)/r(k))*a + (r(-1)/r(k))*c;(r(k + 1)/r(k))*c + (r(-1)/r(k))*a)
= (d((r(k + 1)/r(k))*a + (r(-1)/r(k))*c;a) + d(a;(r(k + 1)/r(k))*c + (r(-1)/r(k))*a))
8. r0 \mleq{} d(a;(r(k + 1)/r(k))*c + (r(-1)/r(k))*a)
9. d((r(k + 1)/r(k))*a + (r(-1)/r(k))*c;a) = (d(a;c)/r(k))
\mvdash{} r0 < d((r(k + 1)/r(k))*a + -((r1/r(k)))*c;a)
By
Latex:
(Assert -((r1/r(k))) = (r(-1)/r(k)) BY
(nRMul \mkleeneopen{}r(k)\mkleeneclose{} 0\mcdot{} THEN Auto))
Home
Index