Nuprl Lemma : separated-decider-not-extensional

a,b:ℝ.  ((a < b)  (∀d:∀u:ℝ((a < u) ∨ (u < b)). (¬¬(∃x,y:ℝ((x y) ∧ (↑isl(d x)) ∧ (↑isr(d y)))))))


Proof




Definitions occuring in Statement :  rless: x < y req: y real: assert: b isr: isr(x) isl: isl(x) all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q apply: a
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T prop: subtype_rel: A ⊆B or: P ∨ Q so_apply: x[s] and: P ∧ Q exists: x:A. B[x] isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt true: True bfalse: ff rless: x < y sq_exists: x:{A| B[x]} nat_plus: + less_than: a < b squash: T uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top isr: isr(x) guard: {T}
Lemmas referenced :  no-real-separation-corollary assert_wf isl_wf rless_wf real_wf or_wf isr_wf not_wf exists_wf req_wf all_wf nat_plus_properties full-omega-unsat intformless_wf itermAdd_wf itermVar_wf itermConstant_wf int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf equal_wf false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination sqequalRule lambdaEquality hypothesisEquality hypothesis applyEquality functionExtensionality because_Cache independent_functionElimination voidElimination productEquality dependent_pairFormation unionElimination natural_numberEquality setElimination rename imageElimination productElimination independent_isectElimination approximateComputation int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidEquality equalityTransitivity equalitySymmetry inlFormation inrFormation

Latex:
\mforall{}a,b:\mBbbR{}.
    ((a  <  b)  {}\mRightarrow{}  (\mforall{}d:\mforall{}u:\mBbbR{}.  ((a  <  u)  \mvee{}  (u  <  b)).  (\mneg{}\mneg{}(\mexists{}x,y:\mBbbR{}.  ((x  =  y)  \mwedge{}  (\muparrow{}isl(d  x))  \mwedge{}  (\muparrow{}isr(d  y)))))))



Date html generated: 2017_10_03-AM-10_02_05
Last ObjectModification: 2017_06_30-PM-00_37_20

Theory : reals


Home Index