Nuprl Lemma : series-sum-linear2
∀x:ℕ ⟶ ℝ. ∀a,c:ℝ. (Σn.x[n] = a
⇒ Σn.c * x[n] = c * a)
Proof
Definitions occuring in Statement :
series-sum: Σn.x[n] = a
,
rmul: a * b
,
real: ℝ
,
nat: ℕ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
Definitions unfolded in proof :
series-sum: Σn.x[n] = a
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
so_lambda: λ2x.t[x]
,
member: t ∈ T
,
so_apply: x[s]
,
uall: ∀[x:A]. B[x]
,
nat: ℕ
,
subtype_rel: A ⊆r B
,
prop: ℙ
,
uimplies: b supposing a
,
le: A ≤ B
,
and: P ∧ Q
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
guard: {T}
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :
rmul-limit,
nat_wf,
rsum_wf,
int_seg_wf,
converges-to_wf,
int_seg_subtype_nat,
false_wf,
real_wf,
req_weakening,
rmul_wf,
constant-limit,
converges-to_functionality,
req_functionality,
req_inversion,
rsum_linearity2
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
lambdaFormation,
cut,
lemma_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
lambdaEquality,
hypothesisEquality,
hypothesis,
isectElimination,
natural_numberEquality,
setElimination,
rename,
applyEquality,
because_Cache,
addEquality,
independent_functionElimination,
independent_isectElimination,
independent_pairFormation,
functionEquality,
productElimination
Latex:
\mforall{}x:\mBbbN{} {}\mrightarrow{} \mBbbR{}. \mforall{}a,c:\mBbbR{}. (\mSigma{}n.x[n] = a {}\mRightarrow{} \mSigma{}n.c * x[n] = c * a)
Date html generated:
2016_05_18-AM-07_57_04
Last ObjectModification:
2015_12_28-AM-01_08_42
Theory : reals
Home
Index