Nuprl Lemma : square-req-1-iff

x:ℝ(x ≠ -(r1)  (x^2 r1 ⇐⇒ r1))


Proof




Definitions occuring in Statement :  rneq: x ≠ y rnexp: x^k1 req: y rminus: -(x) int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q natural_number: $n
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B nat: rev_implies:  Q uall: [x:A]. B[x] prop: member: t ∈ T or: P ∨ Q and: P ∧ Q iff: ⇐⇒ Q implies:  Q all: x:A. B[x] uimplies: supposing a
Lemmas referenced :  iff_wf all_wf le_wf false_wf rnexp_wf square-is-one real_wf rneq_wf rminus_wf int-to-real_wf req_wf or_wf req_inversion req_weakening rneq_functionality rneq_irreflexivity
Rules used in proof :  functionEquality lambdaEquality sqequalRule dependent_set_memberEquality independent_functionElimination dependent_functionElimination productElimination impliesFunctionality allFunctionality addLevel inlFormation natural_numberEquality hypothesisEquality isectElimination extract_by_obid introduction hypothesis thin unionElimination sqequalHypSubstitution independent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution cut independent_isectElimination because_Cache voidElimination

Latex:
\mforall{}x:\mBbbR{}.  (x  \mneq{}  -(r1)  {}\mRightarrow{}  (x\^{}2  =  r1  \mLeftarrow{}{}\mRightarrow{}  x  =  r1))



Date html generated: 2017_10_03-AM-08_50_39
Last ObjectModification: 2017_08_02-PM-03_11_59

Theory : reals


Home Index