Nuprl Lemma : totally-bounded-neg
∀[A:Set(ℝ)]. (totally-bounded(A) 
⇐⇒ totally-bounded(-(A)))
Proof
Definitions occuring in Statement : 
rset-neg: -(A)
, 
totally-bounded: totally-bounded(A)
, 
rset: Set(ℝ)
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
totally-bounded: totally-bounded(A)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
nat_plus: ℕ+
, 
top: Top
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
cand: A c∧ B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
Lemmas referenced : 
rminus_wf, 
int_seg_wf, 
member_rset_neg_lemma, 
istype-void, 
rset-member_wf, 
squash_wf, 
true_wf, 
real_wf, 
rminus-rminus-eq, 
subtype_rel_self, 
iff_weakening_equal, 
rless_wf, 
rabs-rminus, 
rsub_wf, 
rabs_wf, 
rset-neg_wf, 
int-to-real_wf, 
totally-bounded_wf, 
rset_wf, 
radd_wf, 
itermSubtract_wf, 
itermMinus_wf, 
itermVar_wf, 
itermAdd_wf, 
rless_functionality, 
rabs_functionality, 
req_weakening, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
real_term_value_minus_lemma, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
independent_pairFormation, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
cut, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
productElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
introduction, 
extract_by_obid, 
isectElimination, 
applyEquality, 
universeIsType, 
natural_numberEquality, 
setElimination, 
rename, 
sqequalRule, 
isect_memberEquality_alt, 
voidElimination, 
promote_hyp, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
independent_isectElimination, 
inhabitedIsType, 
productIsType, 
functionIsType, 
approximateComputation, 
int_eqEquality
Latex:
\mforall{}[A:Set(\mBbbR{})].  (totally-bounded(A)  \mLeftarrow{}{}\mRightarrow{}  totally-bounded(-(A)))
Date html generated:
2019_10_29-AM-10_44_44
Last ObjectModification:
2019_04_19-PM-06_33_21
Theory : reals
Home
Index