Step * 1 1 1 1 1 1 of Lemma Legendre-rpolynomial


1. : ℕ
2. ¬(n 0 ∈ ℤ)
3. ¬(n 1 ∈ ℤ)
4. : ℕ1 ⟶ ℝ
5. : ℕn ⟶ ℝ
6. : ℝ
7. r(n) ≠ r0
8. i≤n. λi.if (i =z 0) then (1 i)/n
             if i <then ((2 n) (i 1))/n (n i)/n
             else ((2 n) (i 1))/n
             fi _i x^i) ∈ ℝ
⊢ λi.if i ≤2
     then (r((2 n) 1) if (i =z 0) then r0 else (i 1) fi /r(n)) (r(n 1) (a i)/r(n))
     else (r((2 n) 1) if (i =z 0) then r0 else (i 1) fi /r(n))
     fi [k] = λi.if (i =z 0) then (1 i)/n
                 if i <then ((2 n) (i 1))/n (n i)/n
                 else ((2 n) (i 1))/n
                 fi [k] for k ∈ [0,n]
BY
((D THEN Reduce THEN Auto) THEN RepUR ``so_apply`` THEN AutoSplit) }

1
1. : ℕ
2. ¬(n 0 ∈ ℤ)
3. ¬(n 1 ∈ ℤ)
4. : ℕ1 ⟶ ℝ
5. : ℕn ⟶ ℝ
6. : ℝ
7. r(n) ≠ r0
8. i≤n. λi.if (i =z 0) then (1 i)/n
             if i <then ((2 n) (i 1))/n (n i)/n
             else ((2 n) (i 1))/n
             fi _i x^i) ∈ ℝ
9. : ℤ
10. 0 ≤ k
11. k ≤ n
12. k ≤ (n 2)
⊢ ((r((2 n) 1) if (k =z 0) then r0 else (k 1) fi /r(n)) (r(n 1) (a k)/r(n)))
if (k =z 0) then (1 k)/n else ((2 n) (k 1))/n (n k)/n fi 

2
1. : ℕ
2. ¬(n 0 ∈ ℤ)
3. ¬(n 1 ∈ ℤ)
4. : ℕ1 ⟶ ℝ
5. : ℕn ⟶ ℝ
6. : ℝ
7. r(n) ≠ r0
8. i≤n. λi.if (i =z 0) then (1 i)/n
             if i <then ((2 n) (i 1))/n (n i)/n
             else ((2 n) (i 1))/n
             fi _i x^i) ∈ ℝ
9. : ℤ
10. ¬(k ≤ (n 2))
11. 0 ≤ k
12. k ≤ n
⊢ (r((2 n) 1) (b (k 1))/r(n)) ((2 n) (k 1))/n


Latex:


Latex:

1.  n  :  \mBbbN{}
2.  \mneg{}(n  =  0)
3.  \mneg{}(n  =  1)
4.  a  :  \mBbbN{}n  -  1  {}\mrightarrow{}  \mBbbR{}
5.  b  :  \mBbbN{}n  {}\mrightarrow{}  \mBbbR{}
6.  x  :  \mBbbR{}
7.  r(n)  \mneq{}  r0
8.  (\mSigma{}i\mleq{}n.  \mlambda{}i.if  (i  =\msubz{}  0)  then  (1  -  n  *  a  i)/n
                          if  i  <z  n  -  1  then  ((2  *  n)  -  1  *  b  (i  -  1))/n  -  (n  -  1  *  a  i)/n
                          else  ((2  *  n)  -  1  *  b  (i  -  1))/n
                          fi  \_i  *  x\^{}i)  \mmember{}  \mBbbR{}
\mvdash{}  \mlambda{}i.if  i  \mleq{}z  n  -  2
          then  (r((2  *  n)  -  1)  *  if  (i  =\msubz{}  0)  then  r0  else  b  (i  -  1)  fi  /r(n))  -  (r(n  -  1)  *  (a  i)/r(n))
          else  (r((2  *  n)  -  1)  *  if  (i  =\msubz{}  0)  then  r0  else  b  (i  -  1)  fi  /r(n))
          fi  [k]  =  \mlambda{}i.if  (i  =\msubz{}  0)  then  (1  -  n  *  a  i)/n
                                  if  i  <z  n  -  1  then  ((2  *  n)  -  1  *  b  (i  -  1))/n  -  (n  -  1  *  a  i)/n
                                  else  ((2  *  n)  -  1  *  b  (i  -  1))/n
                                  fi  [k]  for  k  \mmember{}  [0,n]


By


Latex:
((D  0  THEN  Reduce  0  THEN  Auto)  THEN  RepUR  ``so\_apply``  0  THEN  AutoSplit)




Home Index