Nuprl Lemma : lgc_wf
∀[a,x:ℝ]. lgc(a;x) ∈ ℝ supposing r0 < a
Proof
Definitions occuring in Statement :
lgc: lgc(a;x)
,
rless: x < y
,
int-to-real: r(n)
,
real: ℝ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
lgc: lgc(a;x)
,
subtype_rel: A ⊆r B
,
prop: ℙ
,
all: ∀x:A. B[x]
,
rneq: x ≠ y
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
uiff: uiff(P;Q)
,
rge: x ≥ y
,
rgt: x > y
,
guard: {T}
Lemmas referenced :
radd_wf,
rsub_wf,
int-to-real_wf,
int-rmul_wf,
rdiv_wf,
real_exp_wf,
rless_wf,
real_wf,
rexp-positive,
rexp_wf,
rless_functionality,
req_weakening,
radd_functionality,
real_exp-req,
trivial-rless-radd,
rless_functionality_wrt_implies,
rleq_weakening_equal,
rleq_weakening_rless,
radd_functionality_wrt_rless1
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
closedConclusion,
natural_numberEquality,
hypothesis,
because_Cache,
applyEquality,
independent_isectElimination,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
universeIsType,
isect_memberEquality_alt,
isectIsTypeImplies,
inhabitedIsType,
dependent_functionElimination,
inrFormation_alt,
lambdaEquality_alt,
setElimination,
rename,
productElimination,
independent_functionElimination
Latex:
\mforall{}[a,x:\mBbbR{}]. lgc(a;x) \mmember{} \mBbbR{} supposing r0 < a
Date html generated:
2019_10_31-AM-06_08_40
Last ObjectModification:
2019_04_03-AM-01_15_30
Theory : reals_2
Home
Index