Step
*
2
1
1
2
2
of Lemma
small-arcsine
1. N : ℕ+
2. a : ℝ
3. |a| ≤ (r1/r(N + 1))
4. a ∈ (r(-1), r1)
5. ∀f,f':[-((r1/r(N + 1))), (r1/r(N + 1))] ⟶ℝ.
((∀x,y:{x:ℝ| x ∈ [-((r1/r(N + 1))), (r1/r(N + 1))]} . ((x = y)
⇒ (f'[x] = f'[y])))
⇒ d(f[x])/dx = λx.f'[x] on [-((r1/r(N + 1))), (r1/r(N + 1))]
⇒ (∀c:ℝ
((∀x:{x:ℝ| x ∈ [-((r1/r(N + 1))), (r1/r(N + 1))]} . (|f'[x]| ≤ c))
⇒ (∀x,y:{x:ℝ| x ∈ [-((r1/r(N + 1))), (r1/r(N + 1))]} . (|f[x] - f[y]| ≤ (c * |x - y|))))))
6. [-((r1/r(N + 1))), (r1/r(N + 1))] ⊆ (r(-1), r1)
7. ∀c:ℝ
((∀x:{x:ℝ| x ∈ [-((r1/r(N + 1))), (r1/r(N + 1))]} . (|arcsine_deriv(x)| ≤ c))
⇒ (∀x,y:{x:ℝ| x ∈ [-((r1/r(N + 1))), (r1/r(N + 1))]} . (|arcsine(x) - arcsine(y)| ≤ (c * |x - y|))))
⊢ |arcsine(r0) - arcsine(a)| ≤ (r1/r(N))
BY
{ ((Assert 0 < N * (N + 1) BY
Auto)
THEN (Assert r0 < r(N * (N + 1)) BY
Auto)
THEN (FLemma `rsqrt_functionality_wrt_rless` [-1] THENA Auto)
THEN (RWO "rsqrt0" (-1) THENA Auto)) }
1
1. N : ℕ+
2. a : ℝ
3. |a| ≤ (r1/r(N + 1))
4. a ∈ (r(-1), r1)
5. ∀f,f':[-((r1/r(N + 1))), (r1/r(N + 1))] ⟶ℝ.
((∀x,y:{x:ℝ| x ∈ [-((r1/r(N + 1))), (r1/r(N + 1))]} . ((x = y)
⇒ (f'[x] = f'[y])))
⇒ d(f[x])/dx = λx.f'[x] on [-((r1/r(N + 1))), (r1/r(N + 1))]
⇒ (∀c:ℝ
((∀x:{x:ℝ| x ∈ [-((r1/r(N + 1))), (r1/r(N + 1))]} . (|f'[x]| ≤ c))
⇒ (∀x,y:{x:ℝ| x ∈ [-((r1/r(N + 1))), (r1/r(N + 1))]} . (|f[x] - f[y]| ≤ (c * |x - y|))))))
6. [-((r1/r(N + 1))), (r1/r(N + 1))] ⊆ (r(-1), r1)
7. ∀c:ℝ
((∀x:{x:ℝ| x ∈ [-((r1/r(N + 1))), (r1/r(N + 1))]} . (|arcsine_deriv(x)| ≤ c))
⇒ (∀x,y:{x:ℝ| x ∈ [-((r1/r(N + 1))), (r1/r(N + 1))]} . (|arcsine(x) - arcsine(y)| ≤ (c * |x - y|))))
8. 0 < N * (N + 1)
9. r0 < r(N * (N + 1))
10. r0 < rsqrt(r(N * (N + 1)))
⊢ |arcsine(r0) - arcsine(a)| ≤ (r1/r(N))
Latex:
Latex:
1. N : \mBbbN{}\msupplus{}
2. a : \mBbbR{}
3. |a| \mleq{} (r1/r(N + 1))
4. a \mmember{} (r(-1), r1)
5. \mforall{}f,f':[-((r1/r(N + 1))), (r1/r(N + 1))] {}\mrightarrow{}\mBbbR{}.
((\mforall{}x,y:\{x:\mBbbR{}| x \mmember{} [-((r1/r(N + 1))), (r1/r(N + 1))]\} . ((x = y) {}\mRightarrow{} (f'[x] = f'[y])))
{}\mRightarrow{} d(f[x])/dx = \mlambda{}x.f'[x] on [-((r1/r(N + 1))), (r1/r(N + 1))]
{}\mRightarrow{} (\mforall{}c:\mBbbR{}
((\mforall{}x:\{x:\mBbbR{}| x \mmember{} [-((r1/r(N + 1))), (r1/r(N + 1))]\} . (|f'[x]| \mleq{} c))
{}\mRightarrow{} (\mforall{}x,y:\{x:\mBbbR{}| x \mmember{} [-((r1/r(N + 1))), (r1/r(N + 1))]\} .
(|f[x] - f[y]| \mleq{} (c * |x - y|))))))
6. [-((r1/r(N + 1))), (r1/r(N + 1))] \msubseteq{} (r(-1), r1)
7. \mforall{}c:\mBbbR{}
((\mforall{}x:\{x:\mBbbR{}| x \mmember{} [-((r1/r(N + 1))), (r1/r(N + 1))]\} . (|arcsine\_deriv(x)| \mleq{} c))
{}\mRightarrow{} (\mforall{}x,y:\{x:\mBbbR{}| x \mmember{} [-((r1/r(N + 1))), (r1/r(N + 1))]\} .
(|arcsine(x) - arcsine(y)| \mleq{} (c * |x - y|))))
\mvdash{} |arcsine(r0) - arcsine(a)| \mleq{} (r1/r(N))
By
Latex:
((Assert 0 < N * (N + 1) BY
Auto)
THEN (Assert r0 < r(N * (N + 1)) BY
Auto)
THEN (FLemma `rsqrt\_functionality\_wrt\_rless` [-1] THENA Auto)
THEN (RWO "rsqrt0" (-1) THENA Auto))
Home
Index