Nuprl Lemma : RankEx2_Union_wf
∀[S,T:Type]. ∀[union:S × RankEx2(S;T) + RankEx2(S;T)]. (RankEx2_Union(union) ∈ RankEx2(S;T))
Proof
Definitions occuring in Statement :
RankEx2_Union: RankEx2_Union(union)
,
RankEx2: RankEx2(S;T)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
product: x:A × B[x]
,
union: left + right
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
RankEx2: RankEx2(S;T)
,
RankEx2_Union: RankEx2_Union(union)
,
subtype_rel: A ⊆r B
,
eq_atom: x =a y
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
btrue: tt
,
uimplies: b supposing a
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
ext-eq: A ≡ B
,
RankEx2co_size: RankEx2co_size(p)
,
RankEx2_size: RankEx2_size(p)
,
nat: ℕ
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
not: ¬A
Lemmas referenced :
RankEx2co-ext,
subtype_rel_union,
RankEx2_wf,
RankEx2co_wf,
subtype_rel_product,
eq_atom_wf,
bool_wf,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_atom,
eqtt_to_assert,
assert_of_eq_atom,
list_wf,
add_nat_wf,
false_wf,
le_wf,
RankEx2_size_wf,
pi2_wf,
nat_wf,
value-type-has-value,
set-value-type,
int-value-type,
has-value_wf-partial,
RankEx2co_size_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
cut,
dependent_set_memberEquality,
lemma_by_obid,
hypothesis,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
sqequalRule,
dependent_pairEquality,
tokenEquality,
applyEquality,
productEquality,
independent_isectElimination,
lambdaEquality,
because_Cache,
lambdaFormation,
setElimination,
rename,
unionElimination,
equalityElimination,
productElimination,
equalityTransitivity,
equalitySymmetry,
dependent_pairFormation,
promote_hyp,
dependent_functionElimination,
instantiate,
cumulativity,
independent_functionElimination,
voidElimination,
unionEquality,
voidEquality,
equalityEquality,
natural_numberEquality,
independent_pairFormation,
intEquality,
universeEquality
Latex:
\mforall{}[S,T:Type]. \mforall{}[union:S \mtimes{} RankEx2(S;T) + RankEx2(S;T)]. (RankEx2\_Union(union) \mmember{} RankEx2(S;T))
Date html generated:
2016_05_16-AM-09_00_14
Last ObjectModification:
2015_12_28-PM-06_52_10
Theory : C-semantics
Home
Index