Nuprl Lemma : multiply_nat_plus_iff
∀[i:ℕ+]. ∀[x:ℤ]. (i * x ∈ ℕ
⇐⇒ x ∈ ℕ)
Proof
Definitions occuring in Statement :
nat_plus: ℕ+
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
iff: P
⇐⇒ Q
,
member: t ∈ T
,
multiply: n * m
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
subtype_rel: A ⊆r B
,
nat_plus: ℕ+
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uimplies: b supposing a
,
rev_implies: P
⇐ Q
,
nat: ℕ
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
exists: ∃x:A. B[x]
,
top: Top
,
ge: i ≥ j
,
subtract: n - m
,
uiff: uiff(P;Q)
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
true: True
,
le: A ≤ B
,
not: ¬A
,
false: False
Lemmas referenced :
istype-nat,
int_subtype_base,
set_subtype_base,
less_than_wf,
mul_bounds_1a,
nat_plus_subtype_nat,
istype-le,
istype-int,
nat_plus_wf,
nat_plus_properties,
nat_properties,
decidable__le,
mul_bounds_1b,
istype-less_than,
minus-one-mul,
subtract_wf,
subtype_base_sq,
istype-sqequal,
le_weakening2,
mul-swap,
istype-void,
add_functionality_wrt_le,
le_reflexive,
minus-one-mul-top,
zero-add,
one-mul,
add-mul-special,
add-associates,
two-mul,
add-commutes,
mul-distributes-right,
zero-mul,
less-iff-le,
mul-associates,
add-swap,
add-zero,
omega-shadow,
not-lt-2,
minus-zero,
not-le-2,
istype-false,
decidable__lt
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
introduction,
cut,
independent_pairFormation,
Error :lambdaFormation_alt,
sqequalHypSubstitution,
hypothesis,
sqequalRule,
Error :equalityIstype,
extract_by_obid,
baseApply,
closedConclusion,
baseClosed,
hypothesisEquality,
applyEquality,
isectElimination,
thin,
intEquality,
Error :lambdaEquality_alt,
natural_numberEquality,
Error :inhabitedIsType,
independent_isectElimination,
because_Cache,
sqequalBase,
equalitySymmetry,
Error :dependent_set_memberEquality_alt,
multiplyEquality,
setElimination,
rename,
equalityTransitivity,
productElimination,
independent_pairEquality,
dependent_functionElimination,
axiomEquality,
Error :functionIsTypeImplies,
Error :isect_memberEquality_alt,
Error :isectIsTypeImplies,
Error :universeIsType,
applyLambdaEquality,
unionElimination,
minusEquality,
addEquality,
instantiate,
cumulativity,
independent_functionElimination,
Error :dependent_pairFormation_alt,
promote_hyp,
voidElimination,
imageMemberEquality
Latex:
\mforall{}[i:\mBbbN{}\msupplus{}]. \mforall{}[x:\mBbbZ{}]. (i * x \mmember{} \mBbbN{} \mLeftarrow{}{}\mRightarrow{} x \mmember{} \mBbbN{})
Date html generated:
2019_06_20-AM-11_26_47
Last ObjectModification:
2018_12_11-PM-01_01_39
Theory : arithmetic
Home
Index