Nuprl Lemma : implies-strictly-increasing-seq
∀[n:ℕ]. ∀[s:ℕn ⟶ ℤ].  ((∀i:ℕn - 1. s i < s (i + 1)) 
⇒ strictly-increasing-seq(n;s))
Proof
Definitions occuring in Statement : 
strictly-increasing-seq: strictly-increasing-seq(n;s)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
strictly-increasing-seq: strictly-increasing-seq(n;s)
, 
prop: ℙ
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
, 
so_apply: x[s]
, 
guard: {T}
, 
ge: i ≥ j 
, 
less_than: a < b
, 
exists: ∃x:A. B[x]
, 
nat_plus: ℕ+
, 
squash: ↓T
, 
sq_type: SQType(T)
Lemmas referenced : 
all_wf, 
int_seg_wf, 
subtract_wf, 
less_than_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
less-iff-le, 
condition-implies-le, 
add-associates, 
nat_wf, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
le-add-cancel2, 
and_wf, 
le_wf, 
add-member-int_seg2, 
decidable__le, 
not-le-2, 
zero-add, 
add-zero, 
member-less_than, 
less_than_transitivity2, 
le_weakening2, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
int_subtype_base, 
equal_wf, 
not-ge-2, 
minus-minus, 
le-add-cancel, 
add-is-int-iff, 
le_reflexive, 
one-mul, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-mul, 
minus-zero, 
omega-shadow, 
mul-distributes, 
mul-associates, 
le-add-cancel-alt, 
subtype_rel_sets, 
subtype_base_sq, 
decidable__int_equal, 
not-equal-2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
dependent_set_memberEquality, 
productElimination, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
addEquality, 
minusEquality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
functionEquality, 
intWeakElimination, 
dependent_pairFormation, 
sqequalIntensionalEquality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
addLevel, 
multiplyEquality, 
levelHypothesis, 
imageMemberEquality, 
setEquality, 
instantiate, 
cumulativity
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    ((\mforall{}i:\mBbbN{}n  -  1.  s  i  <  s  (i  +  1))  {}\mRightarrow{}  strictly-increasing-seq(n;s))
Date html generated:
2017_04_14-AM-07_26_19
Last ObjectModification:
2017_02_27-PM-02_56_14
Theory : bar-induction
Home
Index