Nuprl Lemma : implies-strictly-increasing-seq

[n:ℕ]. ∀[s:ℕn ⟶ ℤ].  ((∀i:ℕ1. i < (i 1))  strictly-increasing-seq(n;s))


Proof




Definitions occuring in Statement :  strictly-increasing-seq: strictly-increasing-seq(n;s) int_seg: {i..j-} nat: less_than: a < b uall: [x:A]. B[x] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] subtract: m add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q strictly-increasing-seq: strictly-increasing-seq(n;s) prop: nat: so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a subtract: m subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True so_apply: x[s] guard: {T} ge: i ≥  less_than: a < b exists: x:A. B[x] nat_plus: + squash: T sq_type: SQType(T)
Lemmas referenced :  all_wf int_seg_wf subtract_wf less_than_wf decidable__lt false_wf not-lt-2 less-iff-le condition-implies-le add-associates nat_wf minus-add minus-one-mul add-swap minus-one-mul-top add-commutes add_functionality_wrt_le le-add-cancel2 and_wf le_wf add-member-int_seg2 decidable__le not-le-2 zero-add add-zero member-less_than less_than_transitivity2 le_weakening2 nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf int_subtype_base equal_wf not-ge-2 minus-minus le-add-cancel add-is-int-iff le_reflexive one-mul add-mul-special two-mul mul-distributes-right zero-mul minus-zero omega-shadow mul-distributes mul-associates le-add-cancel-alt subtype_rel_sets subtype_base_sq decidable__int_equal not-equal-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename because_Cache hypothesis sqequalRule lambdaEquality applyEquality functionExtensionality hypothesisEquality dependent_set_memberEquality productElimination independent_pairFormation dependent_functionElimination unionElimination voidElimination independent_functionElimination independent_isectElimination addEquality minusEquality isect_memberEquality voidEquality intEquality functionEquality intWeakElimination dependent_pairFormation sqequalIntensionalEquality equalityTransitivity equalitySymmetry promote_hyp baseApply closedConclusion baseClosed addLevel multiplyEquality levelHypothesis imageMemberEquality setEquality instantiate cumulativity

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    ((\mforall{}i:\mBbbN{}n  -  1.  s  i  <  s  (i  +  1))  {}\mRightarrow{}  strictly-increasing-seq(n;s))



Date html generated: 2017_04_14-AM-07_26_19
Last ObjectModification: 2017_02_27-PM-02_56_14

Theory : bar-induction


Home Index