Nuprl Lemma : int_eq-sqle-lemma1

[x:Top]. ∀[y:ℤ].  (if x=y then else ⊥ ≤ x)


Proof




Definitions occuring in Statement :  bottom: uall: [x:A]. B[x] top: Top int_eq: if a=b then else d int: sqle: s ≤ t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T has-value: (a)↓ subtype_rel: A ⊆B and: P ∧ Q all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b false: False iff: ⇐⇒ Q not: ¬A rev_implies:  Q top: Top
Lemmas referenced :  int_subtype_base eq_int_wf eqtt_to_assert assert_of_eq_int has-value_wf_base is-exception_wf eqff_to_assert bool_subtype_base bool_cases_sqequal subtype_base_sq bool_wf iff_transitivity assert_wf bnot_wf not_wf equal-wf-base iff_weakening_uiff assert_of_bnot istype-assert istype-void bottom-sqle exception-not-value value-type-has-value int-value-type istype-int istype-top
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqleRule thin divergentSqle callbyvalueIntEq sqequalHypSubstitution hypothesis sqequalRule baseApply closedConclusion baseClosed hypothesisEquality applyEquality extract_by_obid productElimination isectElimination Error :inhabitedIsType,  Error :lambdaFormation_alt,  unionElimination equalityElimination because_Cache independent_isectElimination equalityTransitivity equalitySymmetry int_eqReduceTrueSq sqleReflexivity Error :dependent_pairFormation_alt,  Error :equalityIsType4,  promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination intEquality independent_pairFormation Error :functionIsType,  int_eqReduceFalseSq Error :isect_memberEquality_alt,  Error :equalityIsType1,  int_eqExceptionCases axiomSqleEquality exceptionSqequal Error :isectIsTypeImplies

Latex:
\mforall{}[x:Top].  \mforall{}[y:\mBbbZ{}].    (if  x=y  then  x  else  \mbot{}  \mleq{}  x)



Date html generated: 2019_06_20-AM-11_27_24
Last ObjectModification: 2018_10_27-AM-11_14_36

Theory : call!by!value_2


Home Index