Nuprl Lemma : sqeq-copath3

[a,b,c,f:Top]. ∀[n,m:ℤ].
  x.if (x) < (m)  then if x=n then a[x] else b[x]  else c[x] ~ λx.if (x) < (m)
                                                                         then if x=n then a[x] else (f b[x])
                                                                         else c[x])


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] top: Top so_apply: x[s] less: if (a) < (b)  then c  else d int_eq: if a=b then else d apply: a lambda: λx.A[x] int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B has-value: (a)↓ and: P ∧ Q all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈  rev_implies:  Q iff: ⇐⇒ Q prop:
Lemmas referenced :  has-value_wf_base int_subtype_base is-exception_wf istype-int istype-top lt_int_wf eqtt_to_assert assert_of_lt_int istype-void eq_int_wf assert_of_eq_int eqff_to_assert bool_subtype_base bool_cases_sqequal subtype_base_sq bool_wf assert-bnot neg_assert_of_eq_int iff_weakening_uiff assert_wf less_than_wf istype-less_than exception-not-value_1 value-type-has-value int-value-type
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule sqequalSqle sqleRule thin divergentSqle extract_by_obid sqequalHypSubstitution isectElimination baseApply closedConclusion baseClosed hypothesisEquality applyEquality hypothesis because_Cache sqleReflexivity axiomSqEquality Error :inhabitedIsType,  Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  callbyvalueLess productElimination Error :lambdaFormation_alt,  unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination lessCases independent_pairFormation voidElimination natural_numberEquality imageMemberEquality imageElimination independent_functionElimination int_eqReduceTrueSq Error :dependent_pairFormation_alt,  Error :equalityIsType4,  promote_hyp dependent_functionElimination instantiate cumulativity int_eqReduceFalseSq Error :equalityIsType1,  Error :universeIsType,  lessExceptionCases axiomSqleEquality exceptionSqequal intEquality

Latex:
\mforall{}[a,b,c,f:Top].  \mforall{}[n,m:\mBbbZ{}].
    (\mlambda{}x.if  (x)  <  (m)    then  f  if  x=n  then  a[x]  else  b[x]    else  c[x]  \msim{}  \mlambda{}x.if  (x)  <  (m)
                                                                                                                                                  then  if  x=n
                                                                                                                                                            then  f  a[x]
                                                                                                                                                            else  (f  b[x])
                                                                                                                                                  else  c[x])



Date html generated: 2019_06_20-PM-01_12_05
Last ObjectModification: 2019_01_02-PM-01_35_36

Theory : co-recursion-2


Home Index