Nuprl Lemma : stream-zip_wf2
∀[A,B,C:Type]. ∀[f:A ⟶ B ⟶ C]. ∀[n:ℕ]. ∀[as:primrec(n;Top;λ,T. (A × T))]. ∀[bs:primrec(n;Top;λ,T. (B × T))].
  (stream-zip(f;as;bs) ∈ primrec(n;Top;λ,T. (C × T)))
Proof
Definitions occuring in Statement : 
stream-zip: stream-zip(f;as;bs), 
primrec: primrec(n;b;c), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
top: Top, 
member: t ∈ T, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
le: A ≤ B, 
and: P ∧ Q, 
top: Top, 
eq_int: (i =z j), 
all: ∀x:A. B[x], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
subtract: n - m, 
nequal: a ≠ b ∈ T , 
not: ¬A, 
subtype_rel: A ⊆r B, 
decidable: Dec(P), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
less_than': less_than'(a;b), 
true: True, 
stream-zip: stream-zip(f;as;bs)
Lemmas referenced : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
primrec_wf, 
top_wf, 
int_seg_wf, 
primrec-unroll, 
btrue_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
eq_int_wf, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
stream-zip_wf, 
le_wf, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
lambdaEquality, 
dependent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
universeEquality, 
productEquality, 
cumulativity, 
because_Cache, 
productElimination, 
voidEquality, 
unionElimination, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
functionExtensionality, 
applyEquality, 
minusEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
addEquality, 
intEquality, 
independent_pairEquality, 
functionEquality
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  C].  \mforall{}[n:\mBbbN{}].  \mforall{}[as:primrec(n;Top;\mlambda{},T.  (A  \mtimes{}  T))].
\mforall{}[bs:primrec(n;Top;\mlambda{},T.  (B  \mtimes{}  T))].
    (stream-zip(f;as;bs)  \mmember{}  primrec(n;Top;\mlambda{},T.  (C  \mtimes{}  T)))
 Date html generated: 
2017_04_14-AM-07_47_38
 Last ObjectModification: 
2017_02_27-PM-03_17_57
Theory : co-recursion
Home
Index