Nuprl Lemma : b-almost-full-filter

A,B:ℕ ⟶ ℕ ⟶ ℙ.
  ((b-almost-full(n,m.A[n;m])  b-almost-full(n,m.B[n;m])  b-almost-full(n,m.A[n;m] ∧ B[n;m]))
  ∧ ((∀n,m:ℕ.  (A[n;m]  B[n;m]))  b-almost-full(n,m.A[n;m])  b-almost-full(n,m.B[n;m]))
  ∧ b-almost-full(n,m.True))


Proof




Definitions occuring in Statement :  b-almost-full: b-almost-full(n,m.R[n; m]) nat: prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q and: P ∧ Q true: True function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] and: P ∧ Q cand: c∧ B implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] b-almost-full: b-almost-full(n,m.R[n; m]) nat: strict-inc: StrictInc subtype_rel: A ⊆B guard: {T} int_upper: {i...} ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top le: A ≤ B less_than': less_than'(a;b) true: True
Lemmas referenced :  quotient-member-eq false_wf equiv_rel_true true_wf strict-inc_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties le_wf int_upper_properties int_upper_subtype_nat int_upper_wf exists_wf implies-quotient-true intuitionistic-Ramsey all_wf nat_wf b-almost-full_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality applyEquality hypothesisEquality hypothesis independent_pairFormation independent_functionElimination because_Cache functionEquality cumulativity universeEquality dependent_functionElimination addEquality setElimination rename natural_numberEquality dependent_set_memberEquality setEquality intEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll productElimination introduction dependent_pairEquality axiomEquality

Latex:
\mforall{}A,B:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}.
    ((b-almost-full(n,m.A[n;m])  {}\mRightarrow{}  b-almost-full(n,m.B[n;m])  {}\mRightarrow{}  b-almost-full(n,m.A[n;m]  \mwedge{}  B[n;m]))
    \mwedge{}  ((\mforall{}n,m:\mBbbN{}.    (A[n;m]  {}\mRightarrow{}  B[n;m]))  {}\mRightarrow{}  b-almost-full(n,m.A[n;m])  {}\mRightarrow{}  b-almost-full(n,m.B[n;m]))
    \mwedge{}  b-almost-full(n,m.True))



Date html generated: 2016_05_14-PM-09_53_53
Last ObjectModification: 2016_01_15-PM-10_56_04

Theory : continuity


Home Index