Nuprl Lemma : extended-fan-theorem
∀C:ℕ ⟶ (ℕ ⟶ 𝔹) ⟶ ℙ
  ((∀a:ℕ ⟶ 𝔹. ∃n:ℕ. (C n a)) 
⇒ ⇃(∃m:ℕ. ∀a:ℕ ⟶ 𝔹. ∃n:ℕ. ∀b:ℕ ⟶ 𝔹. ((a = b ∈ (ℕm ⟶ 𝔹)) 
⇒ (C n b))))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bool: 𝔹
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
true: True
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
true: True
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
cand: A c∧ B
, 
quotient: x,y:A//B[x; y]
, 
squash: ↓T
, 
isl: isl(x)
, 
sq_type: SQType(T)
, 
guard: {T}
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
pi1: fst(t)
, 
int_seg: {i..j-}
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
all_wf, 
nat_wf, 
bool_wf, 
exists_wf, 
strong-continuity2-no-inner-squash-unique-bool, 
pi1_wf, 
equal_wf, 
int_seg_wf, 
unit_wf2, 
subtype_rel_dep_function, 
int_seg_subtype_nat, 
false_wf, 
subtype_rel_self, 
assert_wf, 
isl_wf, 
true_wf, 
quotient_wf, 
equiv_rel_true, 
quotient-member-eq, 
equal-wf-base, 
member_wf, 
squash_wf, 
fan_theorem, 
decidable__assert, 
and_wf, 
btrue_wf, 
subtype_base_sq, 
bool_subtype_base, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
int_seg_subtype, 
int_seg_properties, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
assert_functionality_wrt_uiff, 
itermConstant_wf, 
int_term_value_constant_lemma, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
rename, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination, 
because_Cache, 
productElimination, 
dependent_pairEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
natural_numberEquality, 
setElimination, 
unionEquality, 
productEquality, 
independent_isectElimination, 
independent_pairFormation, 
inlEquality, 
promote_hyp, 
pointwiseFunctionality, 
pertypeElimination, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
dependent_pairFormation, 
dependent_set_memberEquality, 
applyLambdaEquality, 
instantiate, 
intEquality, 
unionElimination, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll
Latex:
\mforall{}C:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbP{}
    ((\mforall{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}n:\mBbbN{}.  (C  n  a))  {}\mRightarrow{}  \00D9(\mexists{}m:\mBbbN{}.  \mforall{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}n:\mBbbN{}.  \mforall{}b:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  ((a  =  b)  {}\mRightarrow{}  (C  n  b))))
Date html generated:
2017_04_20-AM-07_22_19
Last ObjectModification:
2017_02_27-PM-05_57_48
Theory : continuity
Home
Index