Nuprl Lemma : rep-seq-from-prop2

[T:Type]. ∀[n:ℕ]. ∀[s:ℕn ⟶ T]. ∀[f:ℕ ⟶ T]. ∀[m:ℕ].  (rep-seq-from(s.f m@m;m 1;f) rep-seq-from(s;m;f) ∈ (ℕn ⟶ T))


Proof




Definitions occuring in Statement :  rep-seq-from: rep-seq-from(s;n;f) seq-add: s.x@n int_seg: {i..j-} nat: uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] add: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  rep-seq-from: rep-seq-from(s;n;f) member: t ∈ T uall: [x:A]. B[x] int_seg: {i..j-} nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: seq-add: s.x@n guard: {T} ge: i ≥  lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] bfalse: ff or: P ∨ Q sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈  decidable: Dec(P) subtype_rel: A ⊆B le: A ≤ B
Lemmas referenced :  lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf eq_int_wf assert_of_eq_int int_seg_properties nat_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int decidable__le intformnot_wf intformle_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma le_wf itermAdd_wf int_term_value_add_lemma nat_wf int_seg_subtype_nat false_wf int_seg_wf
Rules used in proof :  functionExtensionality sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis addEquality natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache lessCases isect_memberFormation sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality imageMemberEquality baseClosed imageElimination independent_functionElimination int_eqReduceTrueSq dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination computeAll promote_hyp instantiate cumulativity int_eqReduceFalseSq applyEquality dependent_set_memberEquality functionEquality universeEquality axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  T].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  T].  \mforall{}[m:\mBbbN{}].
    (rep-seq-from(s.f  m@m;m  +  1;f)  =  rep-seq-from(s;m;f))



Date html generated: 2017_04_20-AM-07_21_13
Last ObjectModification: 2017_02_27-PM-05_56_32

Theory : continuity


Home Index