Nuprl Lemma : strong-continuity-test-prop3

[T:Type]. ∀[M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕ?)]. ∀[n,m:ℕ]. ∀[f:ℕ ⟶ T].
  ((↑isl(strong-continuity-test(M;n;f;M f)))  (↑isl(strong-continuity-test(M;m;f;M f)))  (n m ∈ ℤ))


Proof




Definitions occuring in Statement :  strong-continuity-test: strong-continuity-test(M;n;f;b) int_seg: {i..j-} nat: assert: b isl: isl(x) uall: [x:A]. B[x] implies:  Q unit: Unit apply: a function: x:A ⟶ B[x] union: left right natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] nat: uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q guard: {T} top: Top assert: b ifthenelse: if then else fi  bfalse: ff ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x]
Lemmas referenced :  int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformeq_wf itermVar_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt nat_properties top_wf subtype_rel_union isr-not-isl decidable__lt decidable__equal_int strong-continuity-test-prop1 false_wf int_seg_subtype_nat int_seg_wf subtype_rel_dep_function strong-continuity-test_wf unit_wf2 nat_wf isl_wf assert_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis cumulativity hypothesisEquality functionExtensionality applyEquality because_Cache sqequalRule lambdaEquality natural_numberEquality setElimination rename independent_isectElimination independent_pairFormation lambdaFormation functionEquality unionEquality universeEquality isect_memberFormation introduction dependent_functionElimination axiomEquality isect_memberEquality independent_functionElimination productElimination unionElimination equalityTransitivity equalitySymmetry voidElimination voidEquality dependent_pairFormation int_eqEquality intEquality computeAll

Latex:
\mforall{}[T:Type].  \mforall{}[M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  (\mBbbN{}?)].  \mforall{}[n,m:\mBbbN{}].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  T].
    ((\muparrow{}isl(strong-continuity-test(M;n;f;M  n  f)))
    {}\mRightarrow{}  (\muparrow{}isl(strong-continuity-test(M;m;f;M  m  f)))
    {}\mRightarrow{}  (n  =  m))



Date html generated: 2016_05_19-AM-11_59_28
Last ObjectModification: 2016_05_16-PM-05_42_13

Theory : continuity


Home Index