Nuprl Lemma : strong-continuity-test-prop1

[T:Type]. ∀[M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕ?)]. ∀[n:ℕ]. ∀[f:ℕn ⟶ T]. ∀[b:ℕ?].
  ((↑isl(strong-continuity-test(M;n;f;b)))
   ((↑isl(b)) ∧ (∀i:ℕ(i <  (↑isr(M f)))) ∧ (strong-continuity-test(M;n;f;b) b ∈ (ℕ?))))


Proof




Definitions occuring in Statement :  strong-continuity-test: strong-continuity-test(M;n;f;b) int_seg: {i..j-} nat: assert: b isr: isr(x) isl: isl(x) less_than: a < b uall: [x:A]. B[x] all: x:A. B[x] implies:  Q and: P ∧ Q unit: Unit apply: a function: x:A ⟶ B[x] union: left right natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) all: x:A. B[x] ge: i ≥  prop: implies:  Q not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B and: P ∧ Q uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: uall: [x:A]. B[x] member: t ∈ T guard: {T} primrec: primrec(n;b;c) strong-continuity-test: strong-continuity-test(M;n;f;b) cand: c∧ B btrue: tt ifthenelse: if then else fi  subtract: m eq_int: (i =z j) bfalse: ff rev_implies:  Q iff: ⇐⇒ Q uiff: uiff(P;Q) sq_type: SQType(T) assert: b isl: isl(x) rev_uimplies: rev_uimplies(P;Q) true: True label: ...$L... t squash: T nequal: a ≠ b ∈  bnot: ¬bb it: unit: Unit bool: 𝔹 exposed-it: exposed-it
Lemmas referenced :  assert_witness less_than_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties false_wf int_seg_subtype subtype_rel_dep_function isr_wf int_seg_wf strong-continuity-test_wf unit_wf2 nat_wf isl_wf assert_wf int_term_value_subtract_lemma itermSubtract_wf subtract_wf le_wf less_than_irreflexivity less_than_transitivity1 ge_wf int_term_value_constant_lemma itermConstant_wf full-omega-unsat strong-continuity-test-unroll assert_of_bnot iff_weakening_uiff iff_transitivity eqff_to_assert assert_of_eq_int eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases int_subtype_base equal-wf-base not_wf bnot_wf eq_int_wf int_formula_prop_eq_lemma intformeq_wf decidable__lt decidable__equal_int true_wf squash_wf assert_functionality_wrt_uiff not-isl-assert-isr neg_assert_of_eq_int assert-bnot bool_cases_sqequal equal_wf
Rules used in proof :  axiomEquality independent_functionElimination independent_pairEquality productElimination isect_memberFormation universeEquality functionEquality unionEquality computeAll voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation unionElimination dependent_functionElimination lambdaFormation independent_pairFormation independent_isectElimination lambdaEquality sqequalRule because_Cache rename setElimination natural_numberEquality applyEquality functionExtensionality hypothesisEquality cumulativity hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution dependent_set_memberEquality intWeakElimination approximateComputation impliesFunctionality instantiate baseClosed equalitySymmetry equalityTransitivity imageMemberEquality imageElimination promote_hyp equalityElimination

Latex:
\mforall{}[T:Type].  \mforall{}[M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  (\mBbbN{}?)].  \mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  T].  \mforall{}[b:\mBbbN{}?].
    ((\muparrow{}isl(strong-continuity-test(M;n;f;b)))
    {}\mRightarrow{}  ((\muparrow{}isl(b))  \mwedge{}  (\mforall{}i:\mBbbN{}.  (i  <  n  {}\mRightarrow{}  (\muparrow{}isr(M  i  f))))  \mwedge{}  (strong-continuity-test(M;n;f;b)  =  b)))



Date html generated: 2018_05_21-PM-01_17_44
Last ObjectModification: 2018_05_18-PM-04_03_28

Theory : continuity


Home Index