Nuprl Lemma : strong-continuity2-implies-weak
∀F:(ℕ ⟶ ℕ) ⟶ ℕ. ∀f:ℕ ⟶ ℕ.  ⇃(∃n:ℕ. ∀g:ℕ ⟶ ℕ. ((f = g ∈ (ℕn ⟶ ℕ)) 
⇒ ((F f) = (F g) ∈ ℕ)))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
true: True
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
Lemmas referenced : 
istype-nat, 
strong-continuity2-implies-weak-skolem, 
implies-quotient-true, 
nat_wf, 
equal_wf, 
int_seg_wf, 
subtype_rel_function, 
int_seg_subtype_nat, 
istype-false, 
subtype_rel_self, 
equal-wf-base, 
set_subtype_base, 
le_wf, 
istype-int, 
int_subtype_base, 
decidable__le, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
istype-le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
Error :functionIsType, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
because_Cache, 
Error :inhabitedIsType, 
hypothesisEquality, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
sqequalRule, 
productEquality, 
functionEquality, 
natural_numberEquality, 
applyEquality, 
Error :lambdaEquality_alt, 
setElimination, 
rename, 
independent_isectElimination, 
independent_pairFormation, 
intEquality, 
closedConclusion, 
independent_functionElimination, 
productElimination, 
Error :productIsType, 
Error :equalityIsType1, 
Error :universeIsType, 
Error :equalityIsType4, 
Error :dependent_pairFormation_alt, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
approximateComputation, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :dependent_set_memberEquality_alt
Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.    \00D9(\mexists{}n:\mBbbN{}.  \mforall{}g:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))
Date html generated:
2019_06_20-PM-02_51_45
Last ObjectModification:
2018_11_21-AM-09_56_24
Theory : continuity
Home
Index