Nuprl Lemma : strong-continuity2-weak-skolem

[T:Type]. ∀[F:(ℕ ⟶ T) ⟶ ℕ].  (strong-continuity2(T;F)  weak-continuity-skolem(T;F))


Proof




Definitions occuring in Statement :  weak-continuity-skolem: weak-continuity-skolem(T;F) strong-continuity2: strong-continuity2(T;F) nat: uall: [x:A]. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q strong-continuity2: strong-continuity2(T;F) exists: x:A. B[x] weak-continuity-skolem: weak-continuity-skolem(T;F) member: t ∈ T prop: and: P ∧ Q so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] nat: uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A all: x:A. B[x] pi1: fst(t) isl: isl(x) sq_type: SQType(T) guard: {T} assert: b ifthenelse: if then else fi  btrue: tt true: True ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  strong-continuity2_wf nat_wf exists_wf equal_wf subtype_rel_dep_function int_seg_wf int_seg_subtype_nat false_wf all_wf isect_wf assert_wf isl_wf unit_wf2 and_wf btrue_wf subtype_base_sq bool_wf bool_subtype_base nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination cumulativity hypothesisEquality functionExtensionality applyEquality functionEquality hypothesis universeEquality rename dependent_pairFormation lambdaEquality because_Cache productEquality sqequalRule natural_numberEquality setElimination independent_isectElimination independent_pairFormation inlEquality unionEquality independent_pairEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination dependent_set_memberEquality applyLambdaEquality instantiate unionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll promote_hyp

Latex:
\mforall{}[T:Type].  \mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}].    (strong-continuity2(T;F)  {}\mRightarrow{}  weak-continuity-skolem(T;F))



Date html generated: 2017_04_17-AM-09_54_03
Last ObjectModification: 2017_02_27-PM-05_49_09

Theory : continuity


Home Index