Nuprl Lemma : uniform-continuity-pi-pi-prop2

T:Type. ∀F:(ℕ ⟶ 𝔹) ⟶ T.  ((∀x,y:T.  Dec(x y ∈ T))  (∃n:ℕucpB(T;F;n) ⇐⇒ ∃n:ℕucA(T;F;n)))


Proof




Definitions occuring in Statement :  uniform-continuity-pi-pi: ucpB(T;F;n) uniform-continuity-pi: ucA(T;F;n) nat: bool: 𝔹 decidable: Dec(P) all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q exists: x:A. B[x] uniform-continuity-pi-pi: ucpB(T;F;n) uimplies: supposing a nat: sq_type: SQType(T) guard: {T} subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top squash: T uniform-continuity-pi: ucA(T;F;n) sq_stable: SqStable(P)
Lemmas referenced :  exists_wf nat_wf uniform-continuity-pi-pi_wf bool_wf uniform-continuity-pi_wf all_wf decidable_wf equal_wf set-value-type le_wf int-value-type subtype_base_sq set_subtype_base int_subtype_base uniform-continuity-pi-dec int_seg_subtype_nat false_wf int_seg_properties nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf int_seg_wf uniform-continuity-pi-search_wf subtype_rel_union not_wf top_wf or_wf uniform-continuity-pi-search-prop2 itermAdd_wf itermConstant_wf int_term_value_add_lemma int_term_value_constant_lemma lelt_wf decidable__le intformle_wf int_formula_prop_le_lemma subtype_rel_dep_function subtype_rel_self squash_wf sq_stable__all sq_stable__equal sq_stable__le le_weakening2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality cumulativity hypothesisEquality functionExtensionality applyEquality functionEquality universeEquality productElimination dependent_pairFormation cutEval dependent_set_memberEquality equalityTransitivity equalitySymmetry independent_isectElimination intEquality natural_numberEquality setElimination rename instantiate dependent_functionElimination independent_functionElimination unionElimination int_eqEquality isect_memberEquality voidElimination voidEquality computeAll because_Cache addEquality applyLambdaEquality imageMemberEquality baseClosed imageElimination axiomEquality

Latex:
\mforall{}T:Type.  \mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  T.    ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  (\mexists{}n:\mBbbN{}.  ucpB(T;F;n)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  ucA(T;F;n)))



Date html generated: 2017_04_17-AM-09_59_09
Last ObjectModification: 2017_02_27-PM-05_53_20

Theory : continuity


Home Index