Nuprl Lemma : uniform-continuity-pi-pi-prop2
∀T:Type. ∀F:(ℕ ⟶ 𝔹) ⟶ T.  ((∀x,y:T.  Dec(x = y ∈ T)) 
⇒ (∃n:ℕ. ucpB(T;F;n) 
⇐⇒ ∃n:ℕ. ucA(T;F;n)))
Proof
Definitions occuring in Statement : 
uniform-continuity-pi-pi: ucpB(T;F;n)
, 
uniform-continuity-pi: ucA(T;F;n)
, 
nat: ℕ
, 
bool: 𝔹
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
uniform-continuity-pi-pi: ucpB(T;F;n)
, 
uimplies: b supposing a
, 
nat: ℕ
, 
sq_type: SQType(T)
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
int_seg: {i..j-}
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
squash: ↓T
, 
uniform-continuity-pi: ucA(T;F;n)
, 
sq_stable: SqStable(P)
Lemmas referenced : 
exists_wf, 
nat_wf, 
uniform-continuity-pi-pi_wf, 
bool_wf, 
uniform-continuity-pi_wf, 
all_wf, 
decidable_wf, 
equal_wf, 
set-value-type, 
le_wf, 
int-value-type, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
uniform-continuity-pi-dec, 
int_seg_subtype_nat, 
false_wf, 
int_seg_properties, 
nat_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
uniform-continuity-pi-search_wf, 
subtype_rel_union, 
not_wf, 
top_wf, 
or_wf, 
uniform-continuity-pi-search-prop2, 
itermAdd_wf, 
itermConstant_wf, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
lelt_wf, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
subtype_rel_dep_function, 
subtype_rel_self, 
squash_wf, 
sq_stable__all, 
sq_stable__equal, 
sq_stable__le, 
le_weakening2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
functionEquality, 
universeEquality, 
productElimination, 
dependent_pairFormation, 
cutEval, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
intEquality, 
natural_numberEquality, 
setElimination, 
rename, 
instantiate, 
dependent_functionElimination, 
independent_functionElimination, 
unionElimination, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
because_Cache, 
addEquality, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
axiomEquality
Latex:
\mforall{}T:Type.  \mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  T.    ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  (\mexists{}n:\mBbbN{}.  ucpB(T;F;n)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  ucA(T;F;n)))
Date html generated:
2017_04_17-AM-09_59_09
Last ObjectModification:
2017_02_27-PM-05_53_20
Theory : continuity
Home
Index