Nuprl Lemma : uniform-continuity-pi-dec

T:Type. ∀F:(ℕ ⟶ 𝔹) ⟶ T. ∀n:ℕ.  ((∀x,y:T.  Dec(x y ∈ T))  ucA(T;F;n)  (∀m:ℕ(m <  Dec(ucA(T;F;m)))))


Proof




Definitions occuring in Statement :  uniform-continuity-pi: ucA(T;F;n) nat: bool: 𝔹 less_than: a < b decidable: Dec(P) all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T nat: prop: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q uniform-continuity-pi2: ucB(T;F;n) uniform-continuity-pi: ucA(T;F;n) subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) int_seg: {i..j-} sq_type: SQType(T) guard: {T} lelt: i ≤ j < k assert: b ifthenelse: if then else fi  btrue: tt true: True ext2Cantor: ext2Cantor(n;f;d) bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff so_lambda: λ2x.t[x] so_apply: x[s] bnot: ¬bb subtract: m label: ...$L... t squash: T
Lemmas referenced :  istype-less_than uniform-continuity-pi_wf decidable_wf equal_wf istype-nat bool_wf istype-universe nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-le uniform-continuity-pi2_wf int_seg_wf ext2Cantor_wf btrue_wf bfalse_wf eq_ext2Cantor subtype_rel_function nat_wf int_seg_subtype_nat istype-false subtype_rel_self decidable__equal_bool decidable__equal_int subtype_base_sq int_subtype_base decidable__lt intformless_wf intformeq_wf int_formula_prop_less_lemma int_formula_prop_eq_lemma iff_imp_equal_bool assert_elim bool_subtype_base istype-assert bool_cases lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert set_subtype_base le_wf lelt_wf bool_cases_sqequal assert-bnot iff_weakening_uiff assert_wf less_than_wf int_seg_properties decidable_functionality uniform-continuity-pi2-dec-ext subtract_wf itermSubtract_wf int_term_value_subtract_lemma primrec-wf2 all_wf add-associates add-swap add-commutes zero-add squash_wf true_wf iff_weakening_equal int_seg_subtype not-le-2 condition-implies-le minus-one-mul minus-add minus-minus minus-one-mul-top less-iff-le add_functionality_wrt_le le-add-cancel equal_functionality_wrt_subtype_rel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis Error :inhabitedIsType,  Error :universeIsType,  sqequalRule Error :functionIsType,  because_Cache instantiate universeEquality Error :dependent_set_memberEquality_alt,  addEquality natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :equalityIsType1,  applyEquality functionExtensionality cumulativity intEquality equalityTransitivity equalitySymmetry productElimination Error :productIsType,  applyLambdaEquality equalityElimination Error :equalityIsType4,  baseApply closedConclusion baseClosed promote_hyp Error :setIsType,  functionEquality Error :inlFormation_alt,  imageElimination imageMemberEquality Error :inrFormation_alt,  minusEquality

Latex:
\mforall{}T:Type.  \mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  T.  \mforall{}n:\mBbbN{}.
    ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  ucA(T;F;n)  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  (m  <  n  {}\mRightarrow{}  Dec(ucA(T;F;m)))))



Date html generated: 2019_06_20-PM-02_53_17
Last ObjectModification: 2018_10_30-PM-02_45_33

Theory : continuity


Home Index