Nuprl Lemma : id-graph-edge-implies-member

S:Id List. ∀G:Graph(S). ∀i:{i:Id| (i ∈ S)} . ∀j:Id.  ((i⟶j)∈ (j ∈ S))


Proof




Definitions occuring in Statement :  id-graph-edge: (i⟶j)∈G id-graph: Graph(S) Id: Id l_member: (x ∈ l) list: List all: x:A. B[x] implies:  Q set: {x:A| B[x]} 
Definitions unfolded in proof :  id-graph-edge: (i⟶j)∈G all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] id-graph: Graph(S) subtype_rel: A ⊆B uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] l_member: (x ∈ l) exists: x:A. B[x] cand: c∧ B Id: Id sq_type: SQType(T) guard: {T} nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top and: P ∧ Q sq_stable: SqStable(P) squash: T
Lemmas referenced :  equal_wf decidable__equal_Id sq_stable__l_member int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties select_wf atom2_subtype_base subtype_base_sq list_wf id-graph_wf set_wf subtype_rel_list Id_wf l_member_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality applyEquality setEquality independent_isectElimination lambdaEquality setElimination rename because_Cache productElimination instantiate cumulativity dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination natural_numberEquality unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll introduction imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}S:Id  List.  \mforall{}G:Graph(S).  \mforall{}i:\{i:Id|  (i  \mmember{}  S)\}  .  \mforall{}j:Id.    ((i{}\mrightarrow{}j)\mmember{}G  {}\mRightarrow{}  (j  \mmember{}  S))



Date html generated: 2016_05_14-PM-03_37_49
Last ObjectModification: 2016_01_14-PM-11_19_16

Theory : decidable!equality


Home Index