Nuprl Lemma : id-graph-edge-implies-member
∀S:Id List. ∀G:Graph(S). ∀i:{i:Id| (i ∈ S)} . ∀j:Id.  ((i⟶j)∈G 
⇒ (j ∈ S))
Proof
Definitions occuring in Statement : 
id-graph-edge: (i⟶j)∈G
, 
id-graph: Graph(S)
, 
Id: Id
, 
l_member: (x ∈ l)
, 
list: T List
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
id-graph-edge: (i⟶j)∈G
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
id-graph: Graph(S)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
l_member: (x ∈ l)
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
Id: Id
, 
sq_type: SQType(T)
, 
guard: {T}
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
equal_wf, 
decidable__equal_Id, 
sq_stable__l_member, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
select_wf, 
atom2_subtype_base, 
subtype_base_sq, 
list_wf, 
id-graph_wf, 
set_wf, 
subtype_rel_list, 
Id_wf, 
l_member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
setEquality, 
independent_isectElimination, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
productElimination, 
instantiate, 
cumulativity, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
introduction, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}S:Id  List.  \mforall{}G:Graph(S).  \mforall{}i:\{i:Id|  (i  \mmember{}  S)\}  .  \mforall{}j:Id.    ((i{}\mrightarrow{}j)\mmember{}G  {}\mRightarrow{}  (j  \mmember{}  S))
Date html generated:
2016_05_14-PM-03_37_49
Last ObjectModification:
2016_01_14-PM-11_19_16
Theory : decidable!equality
Home
Index