Nuprl Lemma : l_member-iff-length-filter

[A:Type]. ∀eq:EqDecider(A). ∀L:A List. ∀x:A.  (1 ≤ ||filter(eq x;L)|| ⇐⇒ (x ∈ L))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) length: ||as|| filter: filter(P;l) list: List deq: EqDecider(T) uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] iff: ⇐⇒ Q apply: a natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T eqof: eqof(d) iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: uiff: uiff(P;Q) uimplies: supposing a rev_implies:  Q deq: EqDecider(T) subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] ge: i ≥  decidable: Dec(P) or: P ∨ Q le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top guard: {T} sq_type: SQType(T) less_than: a < b squash: T
Lemmas referenced :  less_than'_wf int_formula_prop_less_lemma intformless_wf decidable__lt eta_conv filter_functionality int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt set_wf subtype_rel_self bool_wf subtype_rel_dep_function decidable__le non_neg_length int_subtype_base set_subtype_base nat_wf subtype_base_sq deq_wf list_wf le_wf iff_wf less_than_wf l_member_wf eqof_wf filter_wf5 length_wf assert_of_lt_int deq-member-length-filter2 assert-deq-member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_functionElimination hypothesisEquality sqequalRule hypothesis productElimination independent_pairFormation independent_functionElimination natural_numberEquality lambdaEquality applyEquality setElimination rename setEquality independent_isectElimination promote_hyp addLevel impliesFunctionality universeEquality instantiate cumulativity intEquality unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll dependent_set_memberEquality equalityTransitivity equalitySymmetry introduction imageElimination independent_pairEquality axiomEquality

Latex:
\mforall{}[A:Type].  \mforall{}eq:EqDecider(A).  \mforall{}L:A  List.  \mforall{}x:A.    (1  \mleq{}  ||filter(eq  x;L)||  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  L))



Date html generated: 2016_05_14-PM-03_21_56
Last ObjectModification: 2016_01_14-PM-11_23_56

Theory : decidable!equality


Home Index