Nuprl Lemma : l_member-iff-length-filter
∀[A:Type]. ∀eq:EqDecider(A). ∀L:A List. ∀x:A.  (1 ≤ ||filter(eq x;L)|| 
⇐⇒ (x ∈ L))
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
length: ||as||
, 
filter: filter(P;l)
, 
list: T List
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
apply: f a
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
eqof: eqof(d)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
rev_implies: P 
⇐ Q
, 
deq: EqDecider(T)
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
guard: {T}
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
Lemmas referenced : 
less_than'_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
eta_conv, 
filter_functionality, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
set_wf, 
subtype_rel_self, 
bool_wf, 
subtype_rel_dep_function, 
decidable__le, 
non_neg_length, 
int_subtype_base, 
set_subtype_base, 
nat_wf, 
subtype_base_sq, 
deq_wf, 
list_wf, 
le_wf, 
iff_wf, 
less_than_wf, 
l_member_wf, 
eqof_wf, 
filter_wf5, 
length_wf, 
assert_of_lt_int, 
deq-member-length-filter2, 
assert-deq-member
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
dependent_functionElimination, 
hypothesisEquality, 
sqequalRule, 
hypothesis, 
productElimination, 
independent_pairFormation, 
independent_functionElimination, 
natural_numberEquality, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
independent_isectElimination, 
promote_hyp, 
addLevel, 
impliesFunctionality, 
universeEquality, 
instantiate, 
cumulativity, 
intEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
introduction, 
imageElimination, 
independent_pairEquality, 
axiomEquality
Latex:
\mforall{}[A:Type].  \mforall{}eq:EqDecider(A).  \mforall{}L:A  List.  \mforall{}x:A.    (1  \mleq{}  ||filter(eq  x;L)||  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  L))
Date html generated:
2016_05_14-PM-03_21_56
Last ObjectModification:
2016_01_14-PM-11_23_56
Theory : decidable!equality
Home
Index