Nuprl Lemma : list-diff-disjoint
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[as,bs:T List].  as-bs = as ∈ (T List) supposing l_disjoint(T;as;bs)
Proof
Definitions occuring in Statement : 
list-diff: as-bs, 
l_disjoint: l_disjoint(T;l1;l2), 
list: T List, 
deq: EqDecider(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
prop: ℙ, 
so_apply: x[s], 
implies: P ⇒ Q, 
list-diff: as-bs, 
all: ∀x:A. B[x], 
top: Top, 
l_disjoint: l_disjoint(T;l1;l2), 
not: ¬A, 
and: P ∧ Q, 
cand: A c∧ B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
guard: {T}, 
or: P ∨ Q, 
false: False, 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b
Lemmas referenced : 
list_induction, 
uall_wf, 
list_wf, 
isect_wf, 
l_disjoint_wf, 
equal_wf, 
list-diff_wf, 
filter_nil_lemma, 
nil_wf, 
cons_wf, 
deq_wf, 
cons_member, 
l_member_wf, 
squash_wf, 
true_wf, 
list-diff-cons, 
iff_weakening_equal, 
deq-member_wf, 
bool_wf, 
eqtt_to_assert, 
assert-deq-member, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
lambdaFormation, 
rename, 
independent_isectElimination, 
universeEquality, 
productElimination, 
inrFormation, 
independent_pairFormation, 
productEquality, 
applyEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
unionElimination, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
inlFormation
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs:T  List].    as-bs  =  as  supposing  l\_disjoint(T;as;bs)
Date html generated:
2017_04_17-AM-09_13_17
Last ObjectModification:
2017_02_27-PM-05_20_31
Theory : decidable!equality
Home
Index