Nuprl Lemma : member-values-for-distinct

[A,V:Type].
  ∀eq:EqDecider(A). ∀L:(A × V) List. ∀a:A.
    ((a ∈ map(λp.(fst(p));L))  (∃v:V. ((v ∈ values-for-distinct(eq;L)) ∧ (<a, v> ∈ L))))


Proof




Definitions occuring in Statement :  values-for-distinct: values-for-distinct(eq;L) l_member: (x ∈ l) map: map(f;as) list: List deq: EqDecider(T) uall: [x:A]. B[x] pi1: fst(t) all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q lambda: λx.A[x] pair: <a, b> product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop: l_member: (x ∈ l) exists: x:A. B[x] cand: c∧ B nat: int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B uimplies: supposing a ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top squash: T true: True subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  and_wf iff_weakening_equal true_wf squash_wf select_member int_formula_prop_eq_lemma int_formula_prop_less_lemma intformeq_wf intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties values-for-distinct_wf select_wf lelt_wf values-for-distinct-property deq_wf list_wf l_member_wf pi1_wf map_wf member-remove-repeats
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_functionElimination hypothesisEquality productEquality lambdaEquality sqequalRule hypothesis productElimination independent_functionElimination universeEquality setElimination rename dependent_set_memberEquality independent_pairFormation equalityTransitivity equalitySymmetry dependent_pairFormation cumulativity independent_isectElimination natural_numberEquality unionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll applyEquality imageElimination independent_pairEquality imageMemberEquality baseClosed

Latex:
\mforall{}[A,V:Type].
    \mforall{}eq:EqDecider(A).  \mforall{}L:(A  \mtimes{}  V)  List.  \mforall{}a:A.
        ((a  \mmember{}  map(\mlambda{}p.(fst(p));L))  {}\mRightarrow{}  (\mexists{}v:V.  ((v  \mmember{}  values-for-distinct(eq;L))  \mwedge{}  (<a,  v>  \mmember{}  L))))



Date html generated: 2016_05_14-PM-03_28_01
Last ObjectModification: 2016_01_14-PM-11_21_40

Theory : decidable!equality


Home Index