Nuprl Lemma : member-values-for-distinct
∀[A,V:Type].
  ∀eq:EqDecider(A). ∀L:(A × V) List. ∀a:A.
    ((a ∈ map(λp.(fst(p));L)) 
⇒ (∃v:V. ((v ∈ values-for-distinct(eq;L)) ∧ (<a, v> ∈ L))))
Proof
Definitions occuring in Statement : 
values-for-distinct: values-for-distinct(eq;L)
, 
l_member: (x ∈ l)
, 
map: map(f;as)
, 
list: T List
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
lambda: λx.A[x]
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
l_member: (x ∈ l)
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
Lemmas referenced : 
and_wf, 
iff_weakening_equal, 
true_wf, 
squash_wf, 
select_member, 
int_formula_prop_eq_lemma, 
int_formula_prop_less_lemma, 
intformeq_wf, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
values-for-distinct_wf, 
select_wf, 
lelt_wf, 
values-for-distinct-property, 
deq_wf, 
list_wf, 
l_member_wf, 
pi1_wf, 
map_wf, 
member-remove-repeats
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
dependent_functionElimination, 
hypothesisEquality, 
productEquality, 
lambdaEquality, 
sqequalRule, 
hypothesis, 
productElimination, 
independent_functionElimination, 
universeEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
cumulativity, 
independent_isectElimination, 
natural_numberEquality, 
unionElimination, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
applyEquality, 
imageElimination, 
independent_pairEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[A,V:Type].
    \mforall{}eq:EqDecider(A).  \mforall{}L:(A  \mtimes{}  V)  List.  \mforall{}a:A.
        ((a  \mmember{}  map(\mlambda{}p.(fst(p));L))  {}\mRightarrow{}  (\mexists{}v:V.  ((v  \mmember{}  values-for-distinct(eq;L))  \mwedge{}  (<a,  v>  \mmember{}  L))))
Date html generated:
2016_05_14-PM-03_28_01
Last ObjectModification:
2016_01_14-PM-11_21_40
Theory : decidable!equality
Home
Index