Nuprl Lemma : values-for-distinct-property
∀[A,V:Type].
  ∀eq:EqDecider(A). ∀L:(A × V) List.
    ((||values-for-distinct(eq;L)|| = ||remove-repeats(eq;map(λp.(fst(p));L))|| ∈ ℤ)
    ∧ (∀i:ℕ||remove-repeats(eq;map(λp.(fst(p));L))||
         (<remove-repeats(eq;map(λp.(fst(p));L))[i], values-for-distinct(eq;L)[i]> ∈ L)))
Proof
Definitions occuring in Statement : 
values-for-distinct: values-for-distinct(eq;L)
, 
remove-repeats: remove-repeats(eq;L)
, 
l_member: (x ∈ l)
, 
select: L[n]
, 
length: ||as||
, 
map: map(f;as)
, 
list: T List
, 
deq: EqDecider(T)
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
lambda: λx.A[x]
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
values-for-distinct: values-for-distinct(eq;L)
, 
iff: P 
⇐⇒ Q
, 
prop: ℙ
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
pi1: fst(t)
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
outl: outl(x)
, 
isl: isl(x)
Lemmas referenced : 
deq_wf, 
list_wf, 
pi1_wf, 
map_wf, 
remove-repeats_wf, 
length_wf, 
int_seg_wf, 
istype-void, 
length-map, 
select_member, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
int_seg_properties, 
select_wf, 
member-remove-repeats, 
isl-apply-alist, 
l_member_wf, 
squash_wf, 
true_wf, 
istype-universe, 
select-map, 
subtype_rel_list, 
top_wf, 
apply-alist_wf, 
assert_elim, 
btrue_wf, 
bfalse_wf, 
btrue_neq_bfalse
Rules used in proof : 
because_Cache, 
inhabitedIsType, 
productIsType, 
sqequalRule, 
lambdaEquality_alt, 
productEquality, 
hypothesisEquality, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
universeIsType, 
hypothesis, 
independent_pairFormation, 
cut, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
voidElimination, 
isect_memberEquality_alt, 
dependent_functionElimination, 
int_eqEquality, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
unionElimination, 
equalitySymmetry, 
equalityTransitivity, 
independent_isectElimination, 
rename, 
setElimination, 
productElimination, 
hyp_replacement, 
applyEquality, 
imageElimination, 
instantiate, 
universeEquality, 
independent_pairEquality, 
imageMemberEquality, 
baseClosed, 
equalityIstype, 
dependent_set_memberEquality_alt, 
applyLambdaEquality
Latex:
\mforall{}[A,V:Type].
    \mforall{}eq:EqDecider(A).  \mforall{}L:(A  \mtimes{}  V)  List.
        ((||values-for-distinct(eq;L)||  =  ||remove-repeats(eq;map(\mlambda{}p.(fst(p));L))||)
        \mwedge{}  (\mforall{}i:\mBbbN{}||remove-repeats(eq;map(\mlambda{}p.(fst(p));L))||
                  (<remove-repeats(eq;map(\mlambda{}p.(fst(p));L))[i],  values-for-distinct(eq;L)[i]>  \mmember{}  L)))
Date html generated:
2019_10_15-AM-10_24_16
Last ObjectModification:
2019_08_05-PM-02_03_49
Theory : decidable!equality
Home
Index