Nuprl Lemma : values-for-distinct_wf

[A,V:Type]. ∀[eq:EqDecider(A)]. ∀[L:(A × V) List].  (values-for-distinct(eq;L) ∈ List)


Proof




Definitions occuring in Statement :  values-for-distinct: values-for-distinct(eq;L) list: List deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T values-for-distinct: values-for-distinct(eq;L) prop: all: x:A. B[x] implies:  Q outl: outl(x) uimplies: supposing a isl: isl(x) and: P ∧ Q not: ¬A false: False subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] nat: ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top guard: {T} or: P ∨ Q cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) eqof: eqof(d) deq: EqDecider(T) bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  assert: b true: True bfalse: ff bnot: ¬bb
Lemmas referenced :  list_wf deq_wf assert_wf isl_wf unit_wf2 apply-alist_wf map_wf assert_elim bfalse_wf and_wf equal_wf btrue_neq_bfalse remove-repeats_wf strong-subtype-deq-subtype strong-subtype-set2 nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases map_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int apply_alist_cons_lemma map_cons_lemma nil_wf cons_wf ifthenelse_wf pi1_wf pi2_wf bool_wf eqtt_to_assert safe-assert-deq eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot subtype_rel_list_set
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination thin productEquality cumulativity hypothesisEquality isect_memberEquality because_Cache universeEquality setEquality lambdaFormation lambdaEquality setElimination rename unionEquality unionElimination addLevel independent_isectElimination levelHypothesis dependent_set_memberEquality independent_pairFormation applyLambdaEquality productElimination independent_functionElimination voidElimination dependent_functionElimination applyEquality intWeakElimination natural_numberEquality dependent_pairFormation int_eqEquality intEquality voidEquality computeAll promote_hyp hypothesis_subsumption addEquality baseClosed instantiate imageElimination independent_pairEquality inlEquality equalityElimination

Latex:
\mforall{}[A,V:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[L:(A  \mtimes{}  V)  List].    (values-for-distinct(eq;L)  \mmember{}  V  List)



Date html generated: 2017_04_17-AM-09_11_36
Last ObjectModification: 2017_02_27-PM-05_19_14

Theory : decidable!equality


Home Index