Nuprl Lemma : poss-maj-length2

[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:T List]. ∀[x:T]. ∀[n:ℤ].  n ≤ ||L|| supposing (fst(poss-maj(eq;L;x))) n ∈ ℤ


Proof




Definitions occuring in Statement :  poss-maj: poss-maj(eq;L;x) length: ||as|| list: List deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) le: A ≤ B int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] decidable: Dec(P) or: P ∨ Q le: A ≤ B and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B nat:
Lemmas referenced :  deq_wf list_wf nat_wf subtype_rel_product poss-maj_wf pi1_wf equal_wf less_than'_wf int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformeq_wf itermVar_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt length_wf decidable__le poss-maj-length
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality dependent_functionElimination hypothesis unionElimination equalityTransitivity equalitySymmetry productElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_pairEquality axiomEquality applyEquality setElimination rename lambdaFormation universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:T  List].  \mforall{}[x:T].  \mforall{}[n:\mBbbZ{}].
    n  \mleq{}  ||L||  supposing  (fst(poss-maj(eq;L;x)))  =  n



Date html generated: 2016_05_14-PM-03_22_43
Last ObjectModification: 2016_01_14-PM-11_23_15

Theory : decidable!equality


Home Index