Nuprl Lemma : poss-maj-length2
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:T List]. ∀[x:T]. ∀[n:ℤ].  n ≤ ||L|| supposing (fst(poss-maj(eq;L;x))) = n ∈ ℤ
Proof
Definitions occuring in Statement : 
poss-maj: poss-maj(eq;L;x)
, 
length: ||as||
, 
list: T List
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
le: A ≤ B
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
and: P ∧ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
Lemmas referenced : 
deq_wf, 
list_wf, 
nat_wf, 
subtype_rel_product, 
poss-maj_wf, 
pi1_wf, 
equal_wf, 
less_than'_wf, 
int_formula_prop_wf, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformeq_wf, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
length_wf, 
decidable__le, 
poss-maj-length
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_pairEquality, 
axiomEquality, 
applyEquality, 
setElimination, 
rename, 
lambdaFormation, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:T  List].  \mforall{}[x:T].  \mforall{}[n:\mBbbZ{}].
    n  \mleq{}  ||L||  supposing  (fst(poss-maj(eq;L;x)))  =  n
Date html generated:
2016_05_14-PM-03_22_43
Last ObjectModification:
2016_01_14-PM-11_23_15
Theory : decidable!equality
Home
Index