Nuprl Lemma : poss-maj-length

[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:T List]. ∀[x:T].  ((fst(poss-maj(eq;L;x))) ≤ ||L||)


Proof




Definitions occuring in Statement :  poss-maj: poss-maj(eq;L;x) length: ||as|| list: List deq: EqDecider(T) uall: [x:A]. B[x] pi1: fst(t) le: A ≤ B universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T poss-maj: poss-maj(eq;L;x) all: x:A. B[x] implies:  Q pi2: snd(t) pi1: fst(t) uimplies: supposing a sq_type: SQType(T) guard: {T} nat: false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: le: A ≤ B or: P ∨ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) cons: [a b] less_than': less_than'(a;b) colength: colength(L) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] less_than: a < b squash: T subtype_rel: A ⊆B deq: EqDecider(T) bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) eqof: eqof(d) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q nequal: a ≠ b ∈ 
Lemmas referenced :  subtype_base_sq int_subtype_base add-zero length_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than le_witness_for_triv list-cases list_accum_nil_lemma length_of_nil_lemma decidable__le intformnot_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_add_lemma product_subtype_list colength-cons-not-zero colength_wf_list istype-false istype-le subtract-1-ge-0 intformeq_wf int_formula_prop_eq_lemma set_subtype_base spread_cons_lemma decidable__equal_int subtract_wf itermSubtract_wf int_term_value_subtract_lemma le_wf list_accum_cons_lemma length_of_cons_lemma eqtt_to_assert safe-assert-deq eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot iff_weakening_uiff assert_wf equal_wf eq_int_wf assert_of_eq_int neg_assert_of_eq_int istype-nat list_wf deq_wf istype-universe list_accum_wf ifthenelse_wf add-is-int-iff false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut independent_pairEquality natural_numberEquality hypothesisEquality Error :inhabitedIsType,  hypothesis Error :lambdaFormation_alt,  thin productElimination applyLambdaEquality sqequalRule sqequalHypSubstitution instantiate extract_by_obid isectElimination cumulativity intEquality independent_isectElimination equalitySymmetry dependent_functionElimination equalityTransitivity independent_functionElimination setElimination rename intWeakElimination approximateComputation Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  Error :functionIsTypeImplies,  unionElimination addEquality promote_hyp hypothesis_subsumption Error :equalityIstype,  because_Cache Error :dependent_set_memberEquality_alt,  imageElimination baseApply closedConclusion baseClosed applyEquality sqequalBase equalityElimination Error :isectIsTypeImplies,  universeEquality productEquality Error :productIsType,  pointwiseFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:T  List].  \mforall{}[x:T].    ((fst(poss-maj(eq;L;x)))  \mleq{}  ||L||)



Date html generated: 2019_06_20-PM-01_54_42
Last ObjectModification: 2018_11_28-PM-05_14_41

Theory : decidable!equality


Home Index