Nuprl Lemma : assert-pair-blex

[A,B:Type].
  ∀eq:EqDecider(A). ∀Ra:A ⟶ A ⟶ 𝔹. ∀Rb:B ⟶ B ⟶ 𝔹. ∀x,y:A × B.
    (↑(pair-blex(eq;Ra;Rb) y) ⇐⇒ pair-lex(A;λa,a'. (↑(Ra a'));λb,b'. (↑(Rb b'))) y)


Proof




Definitions occuring in Statement :  deq: EqDecider(T) pair-blex: pair-blex(eq;Ra;Rb) assert: b bool: 𝔹 pair-lex: pair-lex(A;Ra;Rb) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q apply: a lambda: λx.A[x] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] pair-lex: pair-lex(A;Ra;Rb) pair-blex: pair-blex(eq;Ra;Rb) pi1: fst(t) pi2: snd(t) eqof: eqof(d) member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: rev_implies:  Q or: P ∨ Q uiff: uiff(P;Q) uimplies: supposing a
Lemmas referenced :  bool_wf deq_wf assert_wf bor_wf band_wf eqof_wf or_wf and_wf equal_wf iff_wf iff_transitivity iff_weakening_uiff assert_of_bor assert_of_band safe-assert-deq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation productElimination thin sqequalRule productEquality hypothesisEquality functionEquality cut lemma_by_obid hypothesis sqequalHypSubstitution isectElimination universeEquality independent_pairFormation because_Cache applyEquality addLevel impliesFunctionality independent_functionElimination dependent_functionElimination orFunctionality independent_isectElimination

Latex:
\mforall{}[A,B:Type].
    \mforall{}eq:EqDecider(A).  \mforall{}Ra:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbB{}.  \mforall{}Rb:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbB{}.  \mforall{}x,y:A  \mtimes{}  B.
        (\muparrow{}(pair-blex(eq;Ra;Rb)  x  y)  \mLeftarrow{}{}\mRightarrow{}  pair-lex(A;\mlambda{}a,a'.  (\muparrow{}(Ra  a  a'));\mlambda{}b,b'.  (\muparrow{}(Rb  b  b')))  x  y)



Date html generated: 2016_05_14-AM-06_06_37
Last ObjectModification: 2015_12_26-AM-11_46_55

Theory : equality!deciders


Home Index