Nuprl Lemma : decidable__all_fun

[A,B:Type]. ∀[P:(A ⟶ B) ⟶ ℙ].  ((∃a:ℕ~ ℕa)  (∃b:ℕ~ ℕb)  (∀f:A ⟶ B. Dec(P[f]))  Dec(∀f:A ⟶ B. P[f]))


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} nat: decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  rev_implies:  Q iff: ⇐⇒ Q uimplies: supposing a le: A ≤ B and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} prop: so_apply: x[s] nat: all: x:A. B[x] member: t ∈ T exists: x:A. B[x] implies:  Q uall: [x:A]. B[x]
Lemmas referenced :  ext-eq_weakening equipollent_weakening_ext-eq equipollent_functionality_wrt_equipollent equipollent-exp exp_wf2 istype-universe equipollent_wf istype-nat decidable_wf int_seg_wf indep-function_functionality_wrt_equipollent exp_wf4 decidable__all_finite
Rules used in proof :  independent_isectElimination instantiate Error :inhabitedIsType,  universeEquality Error :productIsType,  applyEquality Error :universeIsType,  Error :functionIsType,  sqequalRule because_Cache rename setElimination natural_numberEquality independent_functionElimination hypothesis dependent_functionElimination hypothesisEquality functionEquality isectElimination extract_by_obid introduction cut thin productElimination sqequalHypSubstitution Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A,B:Type].  \mforall{}[P:(A  {}\mrightarrow{}  B)  {}\mrightarrow{}  \mBbbP{}].
    ((\mexists{}a:\mBbbN{}.  A  \msim{}  \mBbbN{}a)  {}\mRightarrow{}  (\mexists{}b:\mBbbN{}.  B  \msim{}  \mBbbN{}b)  {}\mRightarrow{}  (\mforall{}f:A  {}\mrightarrow{}  B.  Dec(P[f]))  {}\mRightarrow{}  Dec(\mforall{}f:A  {}\mrightarrow{}  B.  P[f]))



Date html generated: 2019_06_20-PM-02_19_33
Last ObjectModification: 2019_06_06-PM-00_23_51

Theory : equipollence!!cardinality!


Home Index