Nuprl Lemma : decidable__equal_finite

Finite types have decidable equality.
We have to put `guard` on the conclusion because otherwise the
tactic ProveDecidable will try to use this lemma to prove, for example,
that ⌜ℤ⌝ has decidable equality -- but ⌜ℤ⌝ is not finite, so the tactic fails.⋅

T:Type. (finite(T)  {∀x,y:T.  Dec(x y ∈ T)})


Proof




Definitions occuring in Statement :  finite: finite(T) decidable: Dec(P) guard: {T} all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  guard: {T} all: x:A. B[x] implies:  Q finite: finite(T) exists: x:A. B[x] equipollent: B member: t ∈ T subtype_rel: A ⊆B int_seg: {i..j-} uall: [x:A]. B[x] nat: decidable: Dec(P) or: P ∨ Q prop: biject: Bij(A;B;f) inject: Inj(A;B;f) surject: Surj(A;B;f) and: P ∧ Q ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top lelt: i ≤ j < k
Lemmas referenced :  decidable__int_equal int_seg_wf not_wf equal_wf finite_wf nat_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le int_seg_properties intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination applyEquality functionExtensionality hypothesisEquality cumulativity hypothesis lambdaEquality setElimination rename isectElimination natural_numberEquality because_Cache unionElimination inlFormation inrFormation universeEquality independent_functionElimination equalityTransitivity equalitySymmetry independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll dependent_set_memberEquality Error :applyLambdaEquality

Latex:
\mforall{}T:Type.  (finite(T)  {}\mRightarrow{}  \{\mforall{}x,y:T.    Dec(x  =  y)\})



Date html generated: 2016_10_21-AM-11_00_10
Last ObjectModification: 2016_08_09-AM-10_54_55

Theory : equipollence!!cardinality!


Home Index