Nuprl Lemma : decidable__equal_finite
Finite types have decidable equality.
We have to put a `guard` on the conclusion because otherwise the
tactic ProveDecidable will try to use this lemma to prove, for example,
that ⌜ℤ⌝ has decidable equality -- but ⌜ℤ⌝ is not finite, so the tactic fails.⋅
∀T:Type. (finite(T) 
⇒ {∀x,y:T.  Dec(x = y ∈ T)})
Proof
Definitions occuring in Statement : 
finite: finite(T)
, 
decidable: Dec(P)
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
finite: finite(T)
, 
exists: ∃x:A. B[x]
, 
equipollent: A ~ B
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
prop: ℙ
, 
biject: Bij(A;B;f)
, 
inject: Inj(A;B;f)
, 
surject: Surj(A;B;f)
, 
and: P ∧ Q
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
lelt: i ≤ j < k
Lemmas referenced : 
decidable__int_equal, 
int_seg_wf, 
not_wf, 
equal_wf, 
finite_wf, 
nat_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__le, 
int_seg_properties, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
lelt_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
cumulativity, 
hypothesis, 
lambdaEquality, 
setElimination, 
rename, 
isectElimination, 
natural_numberEquality, 
because_Cache, 
unionElimination, 
inlFormation, 
inrFormation, 
universeEquality, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
dependent_set_memberEquality, 
Error :applyLambdaEquality
Latex:
\mforall{}T:Type.  (finite(T)  {}\mRightarrow{}  \{\mforall{}x,y:T.    Dec(x  =  y)\})
Date html generated:
2016_10_21-AM-11_00_10
Last ObjectModification:
2016_08_09-AM-10_54_55
Theory : equipollence!!cardinality!
Home
Index