Nuprl Lemma : equipollent-union-com

[A,B:Type].  A


Proof




Definitions occuring in Statement :  equipollent: B uall: [x:A]. B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] equipollent: B exists: x:A. B[x] member: t ∈ T all: x:A. B[x] implies:  Q prop: biject: Bij(A;B;f) and: P ∧ Q inject: Inj(A;B;f) surject: Surj(A;B;f) outr: outr(x) uimplies: supposing a isl: isl(x) bnot: ¬bb ifthenelse: if then else fi  bfalse: ff assert: b btrue: tt true: True not: ¬A false: False outl: outl(x)
Lemmas referenced :  equal_wf biject_wf and_wf outr_wf assert_wf bnot_wf isl_wf btrue_wf bfalse_wf btrue_neq_bfalse outl_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation dependent_pairFormation lambdaEquality cut hypothesisEquality equalityTransitivity hypothesis equalitySymmetry thin unionEquality lambdaFormation unionElimination sqequalRule inrEquality inlEquality introduction extract_by_obid sqequalHypSubstitution isectElimination dependent_functionElimination independent_functionElimination independent_pairFormation universeEquality dependent_set_memberEquality applyLambdaEquality setElimination rename productElimination independent_isectElimination promote_hyp hyp_replacement natural_numberEquality voidElimination

Latex:
\mforall{}[A,B:Type].    A  +  B  \msim{}  B  +  A



Date html generated: 2019_06_20-PM-02_16_54
Last ObjectModification: 2018_08_21-PM-01_55_42

Theory : equipollence!!cardinality!


Home Index