Nuprl Lemma : equipollent-union-com
∀[A,B:Type].  A + B ~ B + A
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
uall: ∀[x:A]. B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
biject: Bij(A;B;f)
, 
and: P ∧ Q
, 
inject: Inj(A;B;f)
, 
surject: Surj(A;B;f)
, 
outr: outr(x)
, 
uimplies: b supposing a
, 
isl: isl(x)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
assert: ↑b
, 
btrue: tt
, 
true: True
, 
not: ¬A
, 
false: False
, 
outl: outl(x)
Lemmas referenced : 
equal_wf, 
biject_wf, 
and_wf, 
outr_wf, 
assert_wf, 
bnot_wf, 
isl_wf, 
btrue_wf, 
bfalse_wf, 
btrue_neq_bfalse, 
outl_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
dependent_pairFormation, 
lambdaEquality, 
cut, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
thin, 
unionEquality, 
lambdaFormation, 
unionElimination, 
sqequalRule, 
inrEquality, 
inlEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairFormation, 
universeEquality, 
dependent_set_memberEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
productElimination, 
independent_isectElimination, 
promote_hyp, 
hyp_replacement, 
natural_numberEquality, 
voidElimination
Latex:
\mforall{}[A,B:Type].    A  +  B  \msim{}  B  +  A
Date html generated:
2019_06_20-PM-02_16_54
Last ObjectModification:
2018_08_21-PM-01_55_42
Theory : equipollence!!cardinality!
Home
Index