Step
*
1
1
1
2
1
of Lemma
finite-acyclic-rel
.....assertion..... 
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. ∀x,y:T.  Dec(x R y)
4. m : ℤ
5. [%2] : 0 < m
6. ∀[T':Type]. ((T' ⊆r T) 
⇒ T' ~ ℕm - 1 
⇒ acyclic-rel(T';R) 
⇒ SWellFounded(x R y))
7. [T'] : Type
8. T' ⊆r T
9. T' ~ ℕm
10. acyclic-rel(T';R)
⊢ ∃a:T'. ∀b:T'. (¬(b R a))
BY
{ (D -2 THEN (FLemma `biject-inverse` [-2] THENA Auto) THEN ExRepD) }
1
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. ∀x,y:T.  Dec(x R y)
4. m : ℤ
5. [%2] : 0 < m
6. ∀[T':Type]. ((T' ⊆r T) 
⇒ T' ~ ℕm - 1 
⇒ acyclic-rel(T';R) 
⇒ SWellFounded(x R y))
7. [T'] : Type
8. T' ⊆r T
9. f : T' ⟶ ℕm
10. Bij(T';ℕm;f)
11. acyclic-rel(T';R)
12. g : ℕm ⟶ T'
13. ∀b:ℕm. ((f (g b)) = b ∈ ℕm)
14. ∀a:T'. ((g (f a)) = a ∈ T')
⊢ ∃a:T'. ∀b:T'. (¬(b R a))
Latex:
Latex:
.....assertion..... 
1.  [T]  :  Type
2.  [R]  :  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}
3.  \mforall{}x,y:T.    Dec(x  R  y)
4.  m  :  \mBbbZ{}
5.  [\%2]  :  0  <  m
6.  \mforall{}[T':Type].  ((T'  \msubseteq{}r  T)  {}\mRightarrow{}  T'  \msim{}  \mBbbN{}m  -  1  {}\mRightarrow{}  acyclic-rel(T';R)  {}\mRightarrow{}  SWellFounded(x  R  y))
7.  [T']  :  Type
8.  T'  \msubseteq{}r  T
9.  T'  \msim{}  \mBbbN{}m
10.  acyclic-rel(T';R)
\mvdash{}  \mexists{}a:T'.  \mforall{}b:T'.  (\mneg{}(b  R  a))
By
Latex:
(D  -2  THEN  (FLemma  `biject-inverse`  [-2]  THENA  Auto)  THEN  ExRepD)
Home
Index