Nuprl Lemma : finite-acyclic-rel

[T:Type]. ((∃n:ℕ~ ℕn)  (∀[R:T ⟶ T ⟶ ℙ]. ((∀x,y:T.  Dec(x y))  (SWellFounded(x y) ⇐⇒ acyclic-rel(T;R)))))


Proof




Definitions occuring in Statement :  equipollent: B acyclic-rel: acyclic-rel(T;R) strongwellfounded: SWellFounded(R[x; y]) int_seg: {i..j-} nat: decidable: Dec(P) uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T acyclic-rel: acyclic-rel(T;R) all: x:A. B[x] not: ¬A false: False infix_ap: y subtype_rel: A ⊆B prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] nat: exists: x:A. B[x] uimplies: supposing a strongwellfounded: SWellFounded(R[x; y]) equipollent: B rel_plus: R+ nat_plus: + le: A ≤ B less_than': less_than'(a;b) rel_exp: R^n guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) cand: c∧ B pi1: fst(t) sq_exists: x:{A| B[x]} ge: i ≥  squash: T true: True compose: g subtract: m rel-path-between: rel-path-between(T;R;x;y;L) bnot: ¬bb assert: b nequal: a ≠ b ∈  biject: Bij(A;B;f) inject: Inj(A;B;f) less_than: a < b
Lemmas referenced :  wellfounded-acyclic-rel rel_plus_wf strongwellfounded_wf acyclic-rel_wf all_wf decidable_wf exists_wf nat_wf equipollent_wf int_seg_wf subtype_rel_dep_function subtype_rel_self subtype_rel_wf uall_wf subtract_wf infix_ap_wf set_wf less_than_wf primrec-wf2 equipollent-zero biject-inverse rel_exp_wf nat_plus_subtype_nat nat_plus_properties primrec-wf-nat-plus false_wf le_wf rel_exp_one int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf eq_int_wf intformeq_wf int_formula_prop_eq_lemma assert_wf bnot_wf not_wf equal-wf-base int_subtype_base bool_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot equal_wf bool_cases subtype_base_sq bool_subtype_base add-subtract-cancel nat_plus_wf decidable__exists_int_seg decidable__all_int_seg decidable__not pigeon-hole-implies decidable__lt fun_exp_wf int_seg_subtype_nat lelt_wf sq_stable__equal nat_properties subtract-add-cancel squash_wf true_wf fun_exp_add le_weakening2 itermSubtract_wf int_term_value_subtract_lemma iff_weakening_equal decidable__equal_int fun_exp1_lemma add-associates add-swap add-commutes zero-add fun_exp_add1 equipollent-general-subtract-one subtype_rel_transitivity subtype_rel_list length_wf rel-path-between_wf rel_plus-iff-path bool_cases_sqequal assert-bnot neg_assert_of_eq_int add_nat_wf and_wf add_nat_plus add-is-int-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis sqequalRule lambdaEquality dependent_functionElimination voidElimination applyEquality cumulativity functionExtensionality functionEquality universeEquality natural_numberEquality setElimination rename productElimination instantiate because_Cache independent_isectElimination intEquality dependent_pairFormation dependent_set_memberEquality addEquality unionElimination int_eqEquality isect_memberEquality voidEquality computeAll equalityTransitivity equalitySymmetry applyLambdaEquality baseApply closedConclusion baseClosed equalityElimination impliesFunctionality productEquality promote_hyp imageElimination imageMemberEquality hyp_replacement setEquality addLevel levelHypothesis pointwiseFunctionality

Latex:
\mforall{}[T:Type]
    ((\mexists{}n:\mBbbN{}.  T  \msim{}  \mBbbN{}n)
    {}\mRightarrow{}  (\mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}x,y:T.    Dec(x  R  y))  {}\mRightarrow{}  (SWellFounded(x  R  y)  \mLeftarrow{}{}\mRightarrow{}  acyclic-rel(T;R)))))



Date html generated: 2017_04_17-AM-09_35_53
Last ObjectModification: 2017_02_27-PM-05_35_42

Theory : equipollence!!cardinality!


Home Index