Nuprl Lemma : trivial-tree-secures

T:Type. ∀p:wfd-tree(T).  ∀[A:n:ℕ ⟶ (ℕn ⟶ T) ⟶ ℙ]. ((A x.⊥))  tree-secures(T;A;p))


Proof




Definitions occuring in Statement :  tree-secures: tree-secures(T;A;p) wfd-tree: wfd-tree(T) int_seg: {i..j-} nat: bottom: uall: [x:A]. B[x] prop: all: x:A. B[x] implies:  Q apply: a lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: prop: implies:  Q le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A guard: {T} int_seg: {i..j-} lelt: i ≤ j < k uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top so_apply: x[s] tree-secures: tree-secures(T;A;p) Wsup: Wsup(a;b) ifthenelse: if then else fi  btrue: tt bfalse: ff predicate-or-shift: A[x] or: P ∨ Q decidable: Dec(P)
Lemmas referenced :  wfd-tree-induction uall_wf nat_wf int_seg_wf false_wf le_wf int_seg_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf tree-secures_wf wfd-tree_wf predicate-or-shift_wf predicate-shift_wf all_wf decidable__equal_int intformnot_wf intformeq_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality dependent_functionElimination sqequalRule lambdaEquality functionEquality hypothesis applyEquality universeEquality natural_numberEquality setElimination rename because_Cache functionExtensionality dependent_set_memberEquality independent_pairFormation productElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll independent_functionElimination isect_memberFormation inlFormation addLevel hyp_replacement equalitySymmetry unionElimination equalityTransitivity levelHypothesis

Latex:
\mforall{}T:Type.  \mforall{}p:wfd-tree(T).    \mforall{}[A:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbP{}].  ((A  0  (\mlambda{}x.\mbot{}))  {}\mRightarrow{}  tree-secures(T;A;p))



Date html generated: 2016_10_21-AM-11_02_57
Last ObjectModification: 2016_07_12-AM-05_58_29

Theory : fan-theorem


Home Index