Nuprl Lemma : fun_exp-increasing

[T:Type]. ((T ⊆r ℤ (∀f:T ⟶ T. ((∀n:T. n < n)  (∀n:T. ∀i,j:ℕ.  (i <  f^i n < f^j n)))))


Proof




Definitions occuring in Statement :  fun_exp: f^n nat: less_than: a < b subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] nat: false: False ge: i ≥  guard: {T} uimplies: supposing a prop: subtype_rel: A ⊆B top: Top subtract: m sq_type: SQType(T) squash: T le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A true: True iff: ⇐⇒ Q rev_implies:  Q compose: g decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) sq_stable: SqStable(P) so_lambda: λ2x.t[x] so_apply: x[s] nat_plus: + less_than: a < b
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf member-less_than fun_exp_wf subtype_base_sq int_subtype_base add-associates nat_wf add-swap subtract_wf squash_wf true_wf fun_exp_add false_wf le_wf iff_weakening_equal fun_exp1_lemma decidable__le not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top minus-zero add-commutes add_functionality_wrt_le add-zero le-add-cancel not-ge-2 less-iff-le minus-minus add_nat_wf equal_wf less_than_transitivity2 le_weakening2 all_wf subtype_rel_wf add-mul-special zero-mul le_reflexive one-mul two-mul mul-distributes-right omega-shadow mul-distributes mul-associates mul-commutes le-add-cancel-alt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination applyEquality cumulativity functionExtensionality because_Cache instantiate intEquality isect_memberEquality voidEquality minusEquality addEquality equalityTransitivity equalitySymmetry imageElimination dependent_set_memberEquality independent_pairFormation imageMemberEquality baseClosed universeEquality productElimination unionElimination functionEquality multiplyEquality addLevel levelHypothesis

Latex:
\mforall{}[T:Type]
    ((T  \msubseteq{}r  \mBbbZ{})  {}\mRightarrow{}  (\mforall{}f:T  {}\mrightarrow{}  T.  ((\mforall{}n:T.  n  <  f  n)  {}\mRightarrow{}  (\mforall{}n:T.  \mforall{}i,j:\mBbbN{}.    (i  <  j  {}\mRightarrow{}  f\^{}i  n  <  f\^{}j  n)))))



Date html generated: 2017_04_14-AM-07_35_03
Last ObjectModification: 2017_02_27-PM-03_08_09

Theory : fun_1


Home Index