Nuprl Lemma : abs-val_wf

[x:ℤ]. (|x| ∈ ℕ)


Proof




Definitions occuring in Statement :  abs-val: |x| nat: uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T abs-val: |x| all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  nat: prop: bfalse: ff guard: {T} top: Top subtract: m le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A nat_plus: + less_than: a < b squash: T true: True decidable: Dec(P) or: P ∨ Q
Lemmas referenced :  lt_int_wf bool_wf uiff_transitivity equal-wf-base int_subtype_base assert_wf less_than_wf eqtt_to_assert assert_of_lt_int le_weakening2 minus-one-mul le_wf le_int_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int equal_wf not-lt-2 add_functionality_wrt_le subtract_wf le_reflexive minus-one-mul-top minus-zero add-zero one-mul zero-add add-commutes add-mul-special zero-mul less-iff-le false_wf add-associates add-swap omega-shadow decidable__lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality hypothesis lambdaFormation unionElimination equalityElimination sqequalRule baseApply closedConclusion baseClosed applyEquality independent_functionElimination because_Cache productElimination independent_isectElimination dependent_set_memberEquality minusEquality dependent_functionElimination equalityTransitivity equalitySymmetry axiomEquality intEquality multiplyEquality lambdaEquality isect_memberEquality voidElimination voidEquality addEquality independent_pairFormation imageMemberEquality

Latex:
\mforall{}[x:\mBbbZ{}].  (|x|  \mmember{}  \mBbbN{})



Date html generated: 2019_06_20-PM-00_25_54
Last ObjectModification: 2018_08_07-PM-04_55_34

Theory : int_1


Home Index