Nuprl Lemma : assert_pushup_example
4 < 3 ∨ (3 ≤ 5)
Proof
Definitions occuring in Statement : 
less_than: a < b
, 
le: A ≤ B
, 
or: P ∨ Q
, 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
false: False
, 
and: P ∧ Q
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
rev_implies: P 
⇐ Q
, 
all: ∀x:A. B[x]
, 
lt_int: i <z j
, 
le_int: i ≤z j
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bor: p ∨bq
, 
assert: ↑b
, 
btrue: tt
, 
true: True
Lemmas referenced : 
or_wf, 
less_than_wf, 
le_wf, 
assert_wf, 
lt_int_wf, 
le_int_wf, 
bor_wf, 
iff_transitivity, 
assert_of_lt_int, 
assert_of_le_int, 
iff_weakening_uiff, 
assert_of_bor
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
sqequalRule, 
imageElimination, 
productElimination, 
voidElimination, 
independent_functionElimination, 
independent_pairFormation, 
lambdaFormation, 
orFunctionality, 
independent_isectElimination, 
dependent_functionElimination
Latex:
4  <  3  \mvee{}  (3  \mleq{}  5)
Date html generated:
2016_05_13-PM-04_03_28
Last ObjectModification:
2015_12_26-AM-10_56_00
Theory : int_1
Home
Index