Nuprl Lemma : assert_pushup_example

4 < 3 ∨ (3 ≤ 5)


Proof




Definitions occuring in Statement :  less_than: a < b le: A ≤ B or: P ∨ Q natural_number: $n
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] less_than: a < b squash: T less_than': less_than'(a;b) false: False and: P ∧ Q prop: implies:  Q iff: ⇐⇒ Q uiff: uiff(P;Q) uimplies: supposing a rev_implies:  Q all: x:A. B[x] lt_int: i <j le_int: i ≤j bnot: ¬bb ifthenelse: if then else fi  bfalse: ff bor: p ∨bq assert: b btrue: tt true: True
Lemmas referenced :  or_wf less_than_wf le_wf assert_wf lt_int_wf le_int_wf bor_wf iff_transitivity assert_of_lt_int assert_of_le_int iff_weakening_uiff assert_of_bor
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis sqequalRule imageElimination productElimination voidElimination independent_functionElimination independent_pairFormation lambdaFormation orFunctionality independent_isectElimination dependent_functionElimination

Latex:
4  <  3  \mvee{}  (3  \mleq{}  5)



Date html generated: 2016_05_13-PM-04_03_28
Last ObjectModification: 2015_12_26-AM-10_56_00

Theory : int_1


Home Index