Nuprl Lemma : increasing_lower_bound

[k:ℕ]. ∀[f:ℕk ⟶ ℤ]. ∀[x:ℕk].  ((f 0) x) ≤ (f x) supposing increasing(f;k)


Proof




Definitions occuring in Statement :  increasing: increasing(f;k) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B apply: a function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False int_seg: {i..j-} lelt: i ≤ j < k less_than': less_than'(a;b) prop: nat: guard: {T} all: x:A. B[x] ge: i ≥  decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B top: Top true: True increasing: increasing(f;k)
Lemmas referenced :  less_than'_wf false_wf less_than_transitivity2 lelt_wf increasing_wf int_seg_wf nat_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf decidable__le not-le-2 condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-associates zero-add add-commutes le-add-cancel subtract_wf not-ge-2 less-iff-le minus-minus add_functionality_wrt_le decidable__lt not-lt-2 le-add-cancel-alt le-add-cancel2 le_weakening2 minus-zero int_seg_subtype_nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality because_Cache lemma_by_obid isectElimination applyEquality addEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation hypothesis setElimination rename independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality functionEquality intEquality voidElimination intWeakElimination independent_functionElimination unionElimination voidEquality minusEquality multiplyEquality

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[f:\mBbbN{}k  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[x:\mBbbN{}k].    ((f  0)  +  x)  \mleq{}  (f  x)  supposing  increasing(f;k)



Date html generated: 2016_05_13-PM-04_02_38
Last ObjectModification: 2015_12_26-AM-10_57_16

Theory : int_1


Home Index