Nuprl Lemma : div-cancel3

[x:ℕ]. ∀[y:ℕ+]. ∀[z:ℕy].  (((y x) z) ÷ x)


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat_plus: + nat: uall: [x:A]. B[x] divide: n ÷ m multiply: m add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: nat_plus: + int_seg: {i..j-} subtype_rel: A ⊆B le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: all: x:A. B[x] guard: {T} ge: i ≥  lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top uiff: uiff(P;Q) div_nrel: Div(a;n;q) sq_type: SQType(T)
Lemmas referenced :  subtype_base_sq int_subtype_base div_unique2 add_nat_wf multiply_nat_wf nat_plus_subtype_nat int_seg_subtype_nat false_wf nat_wf nat_properties int_seg_properties nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf itermAdd_wf itermMultiply_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_wf equal_wf le_wf decidable__lt intformless_wf int_formula_prop_less_lemma int_seg_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis dependent_set_memberEquality addEquality multiplyEquality setElimination rename because_Cache hypothesisEquality applyEquality sqequalRule natural_numberEquality independent_pairFormation lambdaFormation equalityTransitivity equalitySymmetry applyLambdaEquality productElimination dependent_functionElimination unionElimination dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality computeAll independent_functionElimination sqequalAxiom

Latex:
\mforall{}[x:\mBbbN{}].  \mforall{}[y:\mBbbN{}\msupplus{}].  \mforall{}[z:\mBbbN{}y].    (((y  *  x)  +  z)  \mdiv{}  y  \msim{}  x)



Date html generated: 2017_04_14-AM-09_15_41
Last ObjectModification: 2017_02_27-PM-03_53_10

Theory : int_2


Home Index