Nuprl Lemma : div-cancel3
∀[x:ℕ]. ∀[y:ℕ+]. ∀[z:ℕy].  (((y * x) + z) ÷ y ~ x)
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
divide: n ÷ m
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
uiff: uiff(P;Q)
, 
div_nrel: Div(a;n;q)
, 
sq_type: SQType(T)
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
div_unique2, 
add_nat_wf, 
multiply_nat_wf, 
nat_plus_subtype_nat, 
int_seg_subtype_nat, 
false_wf, 
nat_wf, 
nat_properties, 
int_seg_properties, 
nat_plus_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
itermMultiply_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
equal_wf, 
le_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
int_seg_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
dependent_set_memberEquality, 
addEquality, 
multiplyEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
independent_functionElimination, 
sqequalAxiom
Latex:
\mforall{}[x:\mBbbN{}].  \mforall{}[y:\mBbbN{}\msupplus{}].  \mforall{}[z:\mBbbN{}y].    (((y  *  x)  +  z)  \mdiv{}  y  \msim{}  x)
Date html generated:
2017_04_14-AM-09_15_41
Last ObjectModification:
2017_02_27-PM-03_53_10
Theory : int_2
Home
Index