Nuprl Lemma : div_unique2
∀[a:ℕ]. ∀[n:ℕ+]. ∀[p:ℕ].  uiff((a ÷ n) = p ∈ ℤ;Div(a;n;p))
Proof
Definitions occuring in Statement : 
div_nrel: Div(a;n;q)
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
divide: n ÷ m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
squash: ↓T
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
true: True
, 
div_nrel: Div(a;n;q)
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
nequal: a ≠ b ∈ T 
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
div_elim, 
div_nrel_wf, 
squash_wf, 
true_wf, 
nat_wf, 
nat_properties, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
less_than'_wf, 
member-less_than, 
equal_wf, 
intformeq_wf, 
intformless_wf, 
int_formula_prop_eq_lemma, 
int_formula_prop_less_lemma, 
equal-wf-base, 
int_subtype_base, 
nat_plus_wf, 
div_unique
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
hypothesis, 
hyp_replacement, 
equalitySymmetry, 
sqequalRule, 
equalityTransitivity, 
applyEquality, 
lambdaEquality, 
imageElimination, 
isectElimination, 
because_Cache, 
dependent_set_memberEquality, 
setElimination, 
rename, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageMemberEquality, 
baseClosed, 
independent_pairEquality, 
multiplyEquality, 
axiomEquality, 
addEquality, 
Error :universeIsType, 
divideEquality, 
lambdaFormation, 
Error :inhabitedIsType
Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[p:\mBbbN{}].    uiff((a  \mdiv{}  n)  =  p;Div(a;n;p))
Date html generated:
2019_06_20-PM-01_14_25
Last ObjectModification:
2018_09_26-PM-02_34_40
Theory : int_2
Home
Index