Nuprl Lemma : div_unique2

[a:ℕ]. ∀[n:ℕ+]. ∀[p:ℕ].  uiff((a ÷ n) p ∈ ℤ;Div(a;n;p))


Proof




Definitions occuring in Statement :  div_nrel: Div(a;n;q) nat_plus: + nat: uiff: uiff(P;Q) uall: [x:A]. B[x] divide: n ÷ m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] prop: squash: T nat: nat_plus: + ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top true: True div_nrel: Div(a;n;q) lelt: i ≤ j < k le: A ≤ B nequal: a ≠ b ∈  subtype_rel: A ⊆B
Lemmas referenced :  div_elim div_nrel_wf squash_wf true_wf nat_wf nat_properties nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf le_wf less_than'_wf member-less_than equal_wf intformeq_wf intformless_wf int_formula_prop_eq_lemma int_formula_prop_less_lemma equal-wf-base int_subtype_base nat_plus_wf div_unique
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut independent_pairFormation extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination hypothesis hyp_replacement equalitySymmetry sqequalRule equalityTransitivity applyEquality lambdaEquality imageElimination isectElimination because_Cache dependent_set_memberEquality setElimination rename natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality imageMemberEquality baseClosed independent_pairEquality multiplyEquality axiomEquality addEquality Error :universeIsType,  divideEquality lambdaFormation Error :inhabitedIsType

Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[p:\mBbbN{}].    uiff((a  \mdiv{}  n)  =  p;Div(a;n;p))



Date html generated: 2019_06_20-PM-01_14_25
Last ObjectModification: 2018_09_26-PM-02_34_40

Theory : int_2


Home Index