Nuprl Lemma : div_elim

a:ℕ. ∀n:ℕ+.  ∃q:ℕ(Div(a;n;q) ∧ ((a ÷ n) q ∈ ℤ))


Proof




Definitions occuring in Statement :  div_nrel: Div(a;n;q) nat_plus: + nat: all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q divide: n ÷ m int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T exists: x:A. B[x] uall: [x:A]. B[x] and: P ∧ Q nat: nat_plus: + nequal: a ≠ b ∈  ge: i ≥  not: ¬A implies:  Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top prop: subtype_rel: A ⊆B
Lemmas referenced :  nat_plus_wf nat_wf divide_wf div_fun_sat_div_nrel nat_plus_properties nat_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-base int_subtype_base div_nrel_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid hypothesis dependent_pairFormation sqequalHypSubstitution isectElimination thin hypothesisEquality independent_pairFormation divideEquality setElimination rename because_Cache natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule applyEquality baseClosed productEquality

Latex:
\mforall{}a:\mBbbN{}.  \mforall{}n:\mBbbN{}\msupplus{}.    \mexists{}q:\mBbbN{}.  (Div(a;n;q)  \mwedge{}  ((a  \mdiv{}  n)  =  q))



Date html generated: 2019_06_20-PM-01_14_20
Last ObjectModification: 2018_09_17-PM-05_45_37

Theory : int_2


Home Index