Nuprl Lemma : div_fun_sat_div_nrel

[a:ℕ]. ∀[n:ℕ+].  Div(a;n;a ÷ n)


Proof




Definitions occuring in Statement :  div_nrel: Div(a;n;q) nat_plus: + nat: uall: [x:A]. B[x] divide: n ÷ m
Definitions unfolded in proof :  uiff: uiff(P;Q) subtype_rel: A ⊆B prop: top: Top all: x:A. B[x] exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a ge: i ≥  nequal: a ≠ b ∈  nat_plus: + nat: false: False implies:  Q not: ¬A le: A ≤ B and: P ∧ Q lelt: i ≤ j < k member: t ∈ T uall: [x:A]. B[x] div_nrel: Div(a;n;q) less_than: a < b squash: T decidable: Dec(P) or: P ∨ Q
Lemmas referenced :  nat_wf nat_plus_wf false_wf int_formula_prop_le_lemma int_term_value_add_lemma int_term_value_mul_lemma intformle_wf itermAdd_wf itermMultiply_wf multiply-is-int-iff member-less_than int_subtype_base equal-wf-base int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf full-omega-unsat nat_properties nat_plus_properties less_than'_wf rem_bounds_1 div_rem_sum nat_plus_inc_int_nzero decidable__le istype-int istype-void add-is-int-iff intformnot_wf int_formula_prop_not_lemma decidable__lt
Rules used in proof :  closedConclusion baseApply promote_hyp pointwiseFunctionality addEquality equalitySymmetry equalityTransitivity axiomEquality baseClosed applyEquality independent_pairFormation voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination natural_numberEquality lambdaFormation divideEquality multiplyEquality hypothesis rename setElimination isectElimination extract_by_obid because_Cache hypothesisEquality dependent_functionElimination lambdaEquality independent_pairEquality thin productElimination sqequalHypSubstitution cut introduction isect_memberFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution Error :lambdaFormation_alt,  imageElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  Error :isect_memberEquality_alt,  Error :universeIsType,  Error :equalityIstype,  Error :inhabitedIsType,  sqequalBase unionElimination

Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    Div(a;n;a  \mdiv{}  n)



Date html generated: 2019_06_20-PM-01_14_17
Last ObjectModification: 2019_01_28-PM-03_17_33

Theory : int_2


Home Index