Nuprl Lemma : imin_com

[a,b:ℤ].  (imin(a;b) imin(b;a) ∈ ℤ)


Proof




Definitions occuring in Statement :  imin: imin(a;b) uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  imin: imin(a;b) uall: [x:A]. B[x] member: t ∈ T has-value: (a)↓ uimplies: supposing a all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b
Lemmas referenced :  value-type-has-value int-value-type le_int_wf bool_wf eqtt_to_assert assert_of_le_int decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot le_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut callbyvalueReduce extract_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis hypothesisEquality because_Cache lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination dependent_functionElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll promote_hyp instantiate cumulativity independent_functionElimination axiomEquality

Latex:
\mforall{}[a,b:\mBbbZ{}].    (imin(a;b)  =  imin(b;a))



Date html generated: 2017_04_14-AM-09_14_29
Last ObjectModification: 2017_02_27-PM-03_52_12

Theory : int_2


Home Index